
CHAPTER 2

Let’s Get Started

Marcel Rieser, Andreas Horni and Kai Nagel

This chapter explains how to set up and run MATSim and describes the requirements for build-
ing a basic scenario. Updated information may be available from http://matsim.org, in particular
from http://matsim.org/docs.

Getting the source code into di�erent computing environments and extending MATSim through
the API is described in Part II, Chapter 45.

2.1 Running MATSim

2.1.1 Setting Up MATSim

To run MATSim, you must install the Java SE (Java Standard Edition) that complies with the
appropriate MATSim version. At this time, this is Java SE 7.

Download of the release You also need the o�cial MATSim release, a zip �le (usually designated
with the version number matsim-yy.yy.yy.zip), that includes everything required to run it. It can
be downloaded following the “release” link under http://matsim.org/downloads. Unzip results in
the MATSim directory tree. Continue with Section 2.1.2.

The MATSim directory tree on the web If you want to look at the development version, or look
at things without downloading and installing a zip �le: On GitHub, the root of the MATSim direc-
tory tree (i.e., excluding so-called contribs and playgrounds) is at https://github.com/matsim-
org/matsim/tree/master/matsim.

How to cite this book chapter:
Rieser, M, Horni, A and Nagel, K. 2016. Let’s Get Started. In: Horni, A, Nagel, K and Axhausen,

K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 9–22. London: Ubiquity Press.
DOI: http://dx.doi.org/10.5334/baw.2. License: CC-BY 4.0



10 The Multi-Agent Transport Simulation MATSim

Download of nightly builds If you prefer to use the more up-to-date, but less stable, nightly
builds, you should download, via the same URL (Uniform Resource Locator) http://matsim.org/
downloads,

• the MATSim JAR (Java ARchive) �le (usually tagged with the revision number MATSim_ryyyy.
jar), and

• the required external libraries (MATSim_libs.zip). Unzipping this collection of 3rd-party li-
braries, you should then get a directory libs, with several JAR �les inside. If the directory libs

is in the same directory as the MATSim JAR �le, the libraries are found automatically and do
not have to be added manually to the classpath.

Maven A relatively new feature is that one can use MATSim as an Apache Maven plugin; both
release versions and snapshots are available. See again http://matsim.org/downloads for more in-
formation. For someone who has used Apache Maven before, this is probably the best option. In
this case, one may use the simple Java programming approach of Section 5.1.1.4 to get started.

2.1.2 Running MATSim

When this book was written, only the nightly built MATSim JAR �le could be started by double-
clicking. A minimal GUI (Graphical User Interface), as shown in Figure 2.1, opens and the
MATSim run can be con�gured and started. This feature will appear in the releases, starting with
version 0.8.

For the release 0.7, MATSim does not provide a GUI; thus, you must be able to handle and
access a command line tool. In Linux or Mac OS X, this is typically a Terminal application; in
Microso� Windows, the Power Shell or Command Prompt. At the command prompt type the
following command in one line, but substitute the correct paths:

On Linux or Mac OS X, something like:

java -Xmx512m -cp /path/to/matsim.jar org.matsim.run.Controler /path/
to/config.xml

Figure 2.1: Minimal MATSim GUI.



Let’s Get Started 11

On Windows, an example command could be:

java -Xmx512m -cp C:\ MATSim\matsim.jar org.matsim.run.Controler
C:\ MATSim\input\config.xml

Such a command consists of multiple parts:

• java tells the system that you want to run Java.
• -Xmx512m tells Java that it should use up to 512 MB (Megabyte) of memory. This is typically

enough to run the small examples. For larger scenarios, you might need more memory, e.g., -
Xmx3g would allow Java to use up to 3 GB (Gigabyte) of RAM (Random Access Memory).

• -cp /path/to/matsim.jar tells Java where to �nd the MATSim code.
• org.matsim.run.Controler speci�es which class (think of an “entry point”) should be run. In

most cases, the default MATSim Controler is the class you will need to run simulations.
• /path/to/config.xml tells MATSim which con�g �le is to be used.

2.1.3 Con�guring MATSim

MATSim is con�gured in the con�g �le, building the connection between the user and MATSim
and containing a settings list that in�uences how the simulation behaves.

All con�guration parameters are simple pairs of a parameter name and a parameter value. The
parameters are grouped into logical groups; one group has settings related to the Controler, like the
number of iterations, or another group has settings for the mobsim, e.g., end time of the mobsim.
As shown in Chapter 5, numerous MATSim modules can be added to MATSim and con�gured by
specifying the respective con�guration �le section.

The list of available parameters and valid parameter values may vary from release to release.
Although we try to keep this stable, so�ware changes, mainly new features, may cause settings to
change. For a list of all available settings available with the version you are working with, run the
following command:

java -cp /path/to/matsim.jar org.matsim.run.CreateFullConfig fullConfig.xml

This command will create a new con�g �le fullConfig.xml, containing all available parame-
ters, along with their default values and o�en an explanatory comment, making it easy to see
what settings are available. To use and modify speci�c settings, lines with their corresponding
parameters can be copied to the con�g �le, speci�c to the scenario to be simulated, and the pa-
rameter values can be modi�ed in that �le. See http://matsim.org/javadoc→main distribution
→ CreateFullConfig for more information.

A fairly minimal con�g �le contains the following information:

<module name="network">
<param name="inputNetworkFile" value="<path -to -network -file >" />

</module >

<module name="plans">
<param name="inputPlansFile" value="<path -to -plans -file" />

</module >

<module name="controler">
<param name="firstIteration" value="0" />
<param name="lastIteration" value="0" />

</module >

<module name="planCalcScore" >
<parameterset type="activityParams" >



12 The Multi-Agent Transport Simulation MATSim

<param name="activityType" value="h" />
<param name="typicalDuration" value="12:00:00" />

</parameterset >
<parameterset type="activityParams" >

<param name="activityType" value="w" />
<param name="typicalDuration" value="08:00:00" />

</parameterset >
</module >

For a working example, see the MATSim directory tree (cf. 2.1.1) under examples/tutorial/config
/example1-config.xml.

In the example, supply is provided by the network and demand by the plans �le. Typical input
data is described in Section 2.2.2. The speci�cation that the �rst and last iteration are the same,
means that no replanning of the demand is performed. What is executed is the mobsim (Figure 1.1),
followed by each executed plan’s performance scoring. To function, the scoring needs to know, from
the con�g �le, all activity types used in the plans and the typical duration for each activity type.

Further con�guration possibilities are described in Chapter 4.

2.2 Building and Running a Basic Scenario

This section provides information on typical input data �les used for a MATSim experiment, as
well as the standard output �les generated. It presents a minimal example scenario and brie�y
explains units, conventions and coordinate systems used in MATSim. Then, hints on practical data
requirements are provided.

2.2.1 Units, Conventions, and Coordinate Systems

2.2.1.1 Units

MATSim tries to make few assumptions about actual units, but it is sometimes necessary for
certain estimates. In general, MATSim expects similar types of variables (e.g., all distances) to
be in the same unit wherever they are used. In the following short overview, the most important
(expected) units are listed.

Distance Distance units are for example used in links’ length. They should be speci�ed in the
same unit the coordinate system uses, allowing MATSimto calculate beeline distances. As the much
used UTM (Universal Transverse Mercator) projected coordinate systems (see Section 2.2.1.3) use
meters as the unit of distance, this is the most commonly used distance unit in MATSim.

Time MATSim supports an hour:minute:second notation in several places, but internally, it uses
seconds as the default time unit. This implies, for example, that link speeds must be speci�ed in
distance per second, typically meters per second. One notable exception to this rule are scoring
parameters, where MATSim expects values per hour.

Money Money is unit-free. Units are implicitly given by the marginal utility of money (cf. Equa-
tion (3.4) below). Thus, when one moves from Germany to Switzerland, the parameter βc must be
changed from “utility per Euro” to “utility per Swiss Franc”.

2.2.1.2 Conventions

MATSim uses IDs intensely. These identi�ers can be arbitrary strings, with the following excep-
tions: IDs should not contain any whitespace characters (incl. tabs, new lines, etc.) or commas,
semicolons, etc., because those characters are typically used for separating di�erent IDs from each
other on IDs lists.



Let’s Get Started 13

2.2.1.3 Coordinate Systems

Preparing Your Data in the Appropriate Coordinate System In several input �les, you need
to specify coordinates, e.g., for network nodes. We strongly advise not to use WGS84 coor-
dinates (i.e., GPS (Global Positioning System) coordinates), or any other spherical coordinates
(coordinates ranging from −180 to +180 in west-east direction and from −90 to +90 in south-
north direction). MATSim has to calculate distances between two points in several sections of
the code. Calculation of distances between spherical coordinates is very complex and poten-
tially slow. Instead, MATSim uses the simple Pythagoras theorem, but this requires Cartesian
coordinate system coordinates. Thus, we emphatically recommend using a Cartesian coordi-
nate system along with MATSim, preferably one where the distance unit corresponds to one
meter.

Many countries and regions have custom coordinate systems de�ned, optimized for local usage.
It might be best to ask GIS (Geographic Information System) specialists in your region of interest
for the most commonly used coordinate system there and use that for your data.

If you have no information about what coordinate system is used in your region, it might be best
to use the UTM coordinate system. This system divides the world into multiple bands, each six
degrees wide, and separated into a northern and southern part, which it calls UTM zones. For each
zone, an optimized coordinate system is de�ned. Choose the UTM zone for your region (Wikipedia
has a good map showing the zones) and use its coordinate system.

Telling MATSim About Your Coordinate System For some operations, MATSim must know
the coordinate system where your data is located. For example, some analyses may create output
to be visualized in Google Earth or by QGIS (Quantum GIS). The coordinate system used by your
data can be speci�ed in the con�g �le:

<module name="global">
<param name="coordinateSystem" value="EPSG :32608" />

</module >

This allows MATSim to work with your coordinates and convert them whenever needed.
You have multiple ways to specify the coordinate system you use. The easiest one is to use the

so-called “EPSG (European Petroleum Survey Group) codes”. Most of the commonly used coordi-
nate systems have been standardized and numbered. The EPSG code identi�es a coordinate system
and can be directly used by MATSim. To �nd the correct EPSG code for your coordinate system
(e.g., for one of the UTM zones), the website http://www.spatialreference.org is extremely use-
ful. Search on this website for your coordinate system, e.g., for “WGS 84 / UTM Zone 8N” (for the
northern-hemisphere UTM Zone 8), to �nd a list of matching coordinate systems along with their
EPSG codes (in this case EPSG:32608).

As an alternative, MATSim can also parse the description of a coordinate system in the WKT
(Well-Known Text) format.

2.2.2 Typical Input Data

Minimally, MATSim needs the �les

• config.xml, containing the con�guration options for MATSim and presented above in Sec-
tion 2.1.3,

• network.xml, with the description of the (road) network, and
• population.xml, providing information about travel demand, i.e., list of agents and their day

plans.



14 The Multi-Agent Transport Simulation MATSim

Thus, population.xml and network.xml might get quite large. To save space, MATSim supports
reading and writing data in a compressed format. MATSim uses GZIP-compression for this. Thus,
many �le names have the additional su�x .gz, as in population.xml.gz. MATSim acknowledges
whether �les are compressed, or should be written compressed, based on �le name.

2.2.2.1 An Outlook on Extending MATSim in Part II of this Book

Chapter 7 provides some information about MATSim’s technical tools for initial input generation.
With the basic setting, MATSim agents perform their activities on a speci�c link. If further infor-
mation about activity locations needs to be speci�ed, this can be carried out with facilities described
in Section 6.4. Further, for the simulation of public transport, the base scenario must be extended
by additional �les as shown in Section 16.4.1 and Chapter 16. Count data are a common evalua-
tion measure in transport planning. In MATSim, count data can be provided for the simulation, as
shown in Section 6.3.

In more detail, the network and population �les resemble the following; for the con�g �le, see
Section 2.1.3 above.

2.2.2.2 network.xml

Network is the infrastructure on which agents (or vehicles) can move around. The network consists
of nodes and links (in graph theory, typically called vertices and edges). A simple network descrip-
tion in MATSim’s XML (Extensible Markup Language) data format could contain approximately
the following information:

<network name="example network">
<nodes >

<node id="1" x="0.0" y="0.0"/>
<node id="2" x="1000.0" y="0.0"/>
<node id="3" x="1000.0" y="1000.0"/>

</nodes >
<links >

<link id="1" from="1" to="2" length="3000.00" capacity="3600"
freespeed="27.78" permlanes="2" modes="car" />

<link id="2" from="2" to="3" length="4000.00" capacity="1800"
freespeed="27.78" permlanes="1" modes="car" />

<link id="3" from="3" to="2" length="4000.00" capacity="1800"
freespeed="27.78" permlanes="1" modes="car" />

<link id="4" from="3" to="1" length="6000.00" capacity="3600"
freespeed="27.78" permlanes="2" modes="car" />

</links >
</network >

For a working example, check the examples/equil directory in the MATSim directory tree
(cf. Section 2.1.1).

Each element has an identi�er id. Nodes are described by an x and a y coordinate value (also see
Sections 2.2.1.3 and 7.1). Links have more features; the from and to attributes reference nodes and
describe network geometry. Additional attributes describe tra�c-related link aspects:

• The length of the link, typically in meters (see Section 2.2.1).
• The �ow capacity of the link, i.e., number of vehicles that traverse the link, typically in vehicles

per hour.
• The freespeed is the maximum speed that vehicles are allowed to travel along the link, typically

in meters per second.
• The number of lanes (permlanes) available in the direction speci�ed by the ’from’ and ’to’ nodes.
• The list of modes allowed on the link. This is a comma-separated list, e.g., modes="car, bike,

taxi".



Let’s Get Started 15

All links are uni-directional. If a road can be traveled in both directions, two links must be de�ned
with alternating to and from attributes (see links with id 2 and 3 in the listing above).

2.2.2.3 population.xml

File Format MATSim travel demand is described by the agents’ day plans. The full set of agents
is also called the population, hence the �le name population.xml. Alternatively, plans.xml is also
commonly used in MATSim, as the population �le essentially contains a list of day plans.

The population contains the data in a hierarchical structure, as shown in the following example.
This example illustrates the data structure; minimal input �les need less information, as illustrated
later.

<population >
<person id="1">

<plan selected="yes" score="93.2987721">
<act type="home" link="1" end_time="07:16:23" />
<leg mode="car">

<route type="links">1 2 3</route >
</leg>
<act type="work" link="3" end_time="17:38:34" />
<leg mode="car">

<route type="links">3 1</route >
</leg>
<act type="home" link="1" />

</plan>
</person >
<person id="2">

<plan selected="yes" score="144.39002">
...

</plan>
</person >

</population >

For a working example, check the examples/equil directory in the MATSim directory tree
(cf. Section 2.1.1).

The population contains a list of persons, each person contains a list of plans, and each plan
contains a list of activities and legs.

Exactly one plan per person is marked as selected. Each agent’s selected plan is executed by the
mobility simulation. During the replanning stage, a di�erent plan might become selected. A plan
can contain a score as attribute. The score is calculated and stored in the plan a�er its execution

by the mobility simulation during the scoring stage.
The list of activities and legs in each plan describe each agent’s planned actions. Activities are

assigned a type and typically have—except for the last activity in a day plan—a de�ned end time.
There are some exceptions where activities have a duration instead of an end time. Such activities
are o�en automatically generated by routing algorithms and are not described in this book. To
describe the location where an activity takes place, the activity is either assigned a coordinate by
giving it an x and y attribute value, or it has a link assigned, describing from which link the activity
can be reached. Because the simulation requires a link attribute, Controler calculates the nearest
link for a given coordinate when the link attribute is missing.

A leg describes how an agent plans to travel from one location to the next; each leg must have
a transport mode assigned. Optionally, legs may have an attribute, trav_time, describing the ex-
pected travel time for the leg. For a leg to be simulated, it must contain a route. The format of a
route depends on the mode of a leg. For car legs, the route lists the links the agent has to traverse
in the given order, while for transit legs, information about stop locations and expected transit ser-
vices are stored. MATSim automatically computes initial routes for initial plans that do not contain
them.



16 The Multi-Agent Transport Simulation MATSim

An agent starts a leg directly a�er the previous activity (or leg) has ended. The handling of the
agent in the mobsim depends on the mode. By default, car and transit legs are well-supported by
the mobsim. If the mobsim encounters a mode it does not know, it defaults to teleportation. In this
case, an agent is removed from the simulated reality and re-inserted at its target location a�er the
leg’s expected travel time has passed.

A Minimal Population File The population data format is one of the most central data structures
in MATSim and might appear a bit overwhelming at �rst. Luckily, to get started, it is only necessary
to know a small subset. A population �le needs, approximately, only the following information:

<population >
<person id="1">

<plan>
<act type="home" x="5.0" y="8.0" end_time="08:00:00" />
<leg mode="car" />
<act type="work" x="1500.0" y="890.0" end_time="17:30:00" />
<leg mode="car" />
<act type="home" x="5.0" y="8.0" />

</plan>
</person >
<person id="2">

...
</person >

</population >

For a working example, check the examples/equil directory in the MATSim directory tree
(cf. Section 2.1.1).

The following items can be used for simpli�cation:

• Each person needs exactly one plan.
• The plan does not have to be selected or have a score.
• Activities can be located just by their coordinates.
• Activities should have a somewhat reasonable end-time.
• Legs need only a mode, no routes.

When a simulation is started, MATSim’s Controler will load such a �le and then automatically
assign the link nearest to each activity and calculate a suitable route for each leg. This makes it easy
to get started quickly.

2.2.3 Typical Output Data

MATSim creates output data that can be used to analyze results as well as to monitor the current
simulation setup progress. Some of the �les summarize a complete MATSim run, while others are
created for a speci�c iteration only. The �rst type of �les goes directly to the output folder’s top
level, which can be speci�ed in the controler section of the con�g �le. The other �les are stored
in iteration-speci�c folders ITERS/it.{iteration number}, which are continuously created in the
output folder. For some �les (typically for large ones, such as population), the output frequency
can be speci�ed in the con�g �le. They then go only to the respective iteration folders. The �les
summarizing the complete MATSim run are built ’on the �y’, i.e., a�er every iteration, currently
computed iteration values are stored, allowing continuous monitoring of the run. Some �les are
created by default (such as the score statistics �les); others need to be triggered by a respective
con�guration �le section (such as count data �les).

The following output �les are continuously built up to summarize the complete run.

Log File: During a MATSim run, a log �le is printed containing information you might need later
for your analyses, or in case a run has crashed.



Let’s Get Started 17

Warnings and Errors Log File: Sometimes, MATSim identi�es problems in the simulation or its
con�guration; it will then write warning and error messages to the log �le. Because the log �le
contains so much information, these warnings can be overlooked. For this reason, a separate
log �le is generated in the run output directory, containing only warnings and error messages.
It is important to check this �le during/a�er a run for possible problems.

Score Statistics: Score statistics are available as a picture (scorestats.png), as well as a text �le
(scorestats.txt). They show the average best, worst, executed and overall average of all
agents’ plans for every iteration. An example score plot is shown in Figure 1.2.

Leg Travel Distance Statistics: Leg travel distance statistics (�les traveldistancestats.png and
traveldistancestats.txt) are comparable to score statistics, but instead, they plot travel
distance.

Stopwatch: The stopwatch �le (stopwatch.txt) contains the computer time (so-called wall clock
time) of actions like replanning or the execution of the mobsim for every iteration. This
data is helpful for computational performance analyses, e.g., how long does replanning take
compared to the mobility simulation?

The following output �les are created for speci�c iterations:

Events: Every action in the simulation is recorded as a MATSim event, be it an activity start or
change of network link; see Fig. 2.2. Each event possesses one or multiple attributes. By default,
the time when the event occurred is included. Additionally, information like the ID of the agent
triggering the event, or the link ID where the event occurred, could be included. The events
�le is an important base for post-analyses, like the visualizers. Events are discussed in detail
in Section 45.2.5.

Plans: At con�gurable iterations, the current state of the population, with the agents’ plans, is
printed. The �nal iteration’s plans are also generated on the top level of the output folder.

Leg Histogram: In every iteration, a leg histogram is plotted. A leg histogram depicts the num-
ber of agents arriving, departing or en route, per time unit. Histograms are created for each
transport mode and for the sum of all transport modes. Each �le starts with the iteration num-
ber and ends with the transport mode (e.g., 1.legHistogram_car.png or 1.legHistogram_all.
png). A text �le is also created (e.g., 1.legHistogram.txt), containing the data for all transport
modes.

Trip Durations: For each iteration, a trip durations text �le (e.g., 1.tripdurations.txt), listing
number of trips and their durations, on a time bin level for each activity pair (e.g., from work
to home or from home to shopping), is produced.

Figure 2.2: Mobsim events.



18 The Multi-Agent Transport Simulation MATSim

Link Stats: In each iteration, a link stats �le containing hourly count values and travel times on
every network link is printed. Link stats are particularly important for comparison with real-
world count data, as introduced in Section 6.3.

2.2.4 An Example Scenario

The MATSim release is shipped with an example scenario named equil in the folder
examples/equil, containing these �les: config.xml, network.xml, plans100.xml, and plans2000.

xml.gz, containing, respectively, 100 and 2000 persons with their day plans, using car mode only. A
tiny population containing only 2 persons (plans2.xml), one using public transport, the other using
car mode, is also provided. An example for count data is also found in the folder (counts100.xml).

In addition, there is also a �le with 100 trips (plans100trips.xml), i.e., demand going only from
one location to another, using a dummy activity type at each end. This is provided to show that
MATSim can also be run as a fully trip-based approach, without considering any activities. Clearly,
it loses some of its expressiveness, but the basic concepts, including route and even departure time
adaptation, still work in exactly the same way.

The scenario network is shown in Figure 2.3.
The following lines explain the scenario by discussing the most important sections from the

con�g �le config.xml.

"strategy" section of the con�g �le As shown in the con�g �le excerpt below, this scenario uses
replanning. 10 % of the agents reroute their current route (module ReRoute). The remaining 90 %
select their highest score plan for re-execution in the current iteration (module BestScore). Plans
are deleted from the agent’s memory if it is full, de�ned by maxAgentPlanMemorySize. By default,
the plan with the lowest score is removed; this is con�gurable and currently being researched (see
Section 97.3).

<module name="strategy">
<param name="maxAgentPlanMemorySize" value="5" />

<!-- 0 means unlimited -->

<parameterset type="strategysettings" >
<param name="strategyName" value="ReRoute" />
<param name="weight" value="0.1" />

</parameterset >

Figure 2.3: Equil scenario network.



Let’s Get Started 19

<parameterset type="strategysettings" >
<param name="strategyName" value="BestScore" />
<param name="weight" value="0.9" />

</parameterset >

</module >

"planCalcScore" section of the con�g �le The section planCalcScore de�nes parameters used
for scoring, explained in Chapter 3. As seen in the example, two activity types, h (home) and w

(work), are speci�ed. All activity types contained in the population �le (cf. Section 2.2.2.3) must
be de�ned in the planCalcScore section of the con�g �le.

<module name="planCalcScore" >
<parameterset type="activityParams" >

<param name="activityType" value="h" />
<param name="typicalDuration" value="12:00:00" />

</parameterset >
<parameterset type="activityParams" >

<param name="activityType" value="w" />
<param name="typicalDuration" value="08:00:00" />

</parameterset >
</module >

"controler" section of the con�g �le The scenario is run for 10 iterations, writes the output �les
to ./output/equil (Section 2.2.3) and uses QSim as the mobsim (more on mobsims in Section 1.3,
4.3 and 11).

<module name="controler">
<param name="outputDirectory" value="./ output/equil" />
<param name="lastIteration" value="10" />
<param name="mobsim" value="qsim" />

</module >

Visualization Simulation results can be visualized with Via (Chapter 33) or OTFVis (On The Fly
Visualizer) (Chapter 34).

2.2.5 Data Requirements

2.2.5.1 Population and Activity Schedules

Demand estimation is an important component of MATSim. That means that, in theory, only de-
mand components that do not change from one simulated average working day to the next need
to be provided to MATSim. Examples are: population and its residential and working locations.
In practice, however, MATSim is not yet prepared to endogenously model complete travel de-
mand. Sequence and preferred durations of activities, for example, must be provided as input.
As a result, all travel demand choices not covered by the MATSim loop have to be exogenously
estimated.

For population generation, two possibilities exist: the comfortable way is to translate a full
population census and the slightly more demanding way is to generate a synthetic population (e.g.,
Guo and Bhat, 2007), based on sample or structure surveys. For MATSim, both methods have been
used based on e.g., Swiss Federal Statistical O�ce (BFS) (2000) and Müller (2011a).

Travel demand is usually derived from surveys: for Switzerland, from the microcensus (Swiss
Federal Statistical O�ce (BFS), 2006). Newer data sources, such as GPS or smartphone travel
diaries, are currently being investigated (e.g., Zilske and Nagel, 2015).



20 The Multi-Agent Transport Simulation MATSim

A critical topic in demand and population generation is workplace assignment, as commuting
tra�c is still a major issue, particularly during peak hours. Switzerland’s full census work location
was surveyed at municipality level. Such comfortable data bases are rare, however.

Having generated the residential population of the study area, additional demand components
might be necessary, for example, cross-border and freight tra�c. As these components o�en cannot
be endogenously modeled, MATSim o�ers the feature to handle di�erent subpopulations di�er-
ently (Section 4.5). One can specify that border-crossing agents, for example, are not allowed to
make destination choices within the study area, or that freight agents are not allowed to change
their delivery activity to a leisure activity.

2.2.5.2 Network

In simulation practice, two di�erent network types are used: planning networks and navigation
networks (compare Swiss examples in Figure 2.4(a) and Figure 2.4(b) for the Zürich region). The
former are leaner and o�en serve as initial explorative simulation runs, while the latter are o�en
used for policy runs, usually o�ering far more details, such as bike and even pedestrian links. Data
are available from o�cial sources like federal o�ces, free sources, such as OSM (OpenStreetMap),
and commercial sources, including navigation network providers.

(a) Planning network.

(b) Navigation network..

Figure 2.4: Zürich networks



Let’s Get Started 21

2.2.6 Example Scenario Input Data

Some example scenarios are included in the MATSim main distribution, in the directory
“examples”.

More pre-packaged scenarios can be found under http://www.matsim.org/datasets.

2.3 MATSim Survival Guide

There are many options and possibilities available with MATSim, and �nding them can be a daunt-
ing exercise. Here are a couple of recommendations, derived from our own frequent use of the
system.

1. Always start with and test a small example.
2. Always test large scenarios with one percent runs �rst (e.g., a randomly drawn subsample of your

initial demand). The MATSim GUI (Figure 2.1) allows creating sample populations with the
command Tools...Create Sample Population.
As described in Section 4.3, this requires adaptation of parameters, in particular, the
mobsim’s flowCapacityFactor and storageCapacityFactor factors. As shown in Part II,
Section 6.3, sample scenarios also require parameter adaption for count data comparisons.

3. If your set-up does not work any more, immediately go back to a working version and proceed
from there in small steps.

4. Check logfileWarningErrors.log.
5. Check the comments that are attached to the con�g �le options.

One �nds them in the �le output_config.xml.gz, or near the beginning of logfile.log.
6. Try setting as few con�g �le options as possible.

This has two advantages: (i) Except for the deliberately set options, your simulation will move
along with changed MATSim defaults, and thus with what the community currently considers
the best con�guration. (ii) You will not be a�ected by changes in the con�g �le syntax as long
as they are di�erent from your own settings.

7. Search for documentation via http://matsim.org/javadoc.
8. Search for the latest tutorial via http://matsim.org/docs.






