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CHAPTER 27

Destination Innovation

Andreas Horni, Kai Nagel and Kay W. Axhausen

27.1 Basic Information

Entry point to documentation:
http://matsim.org/extensions→ locationchoice
Invoking the module:
http://matsim.org/javadoc → locationchoice → RunLocationChoiceBestResponse,
RunLocationChoiceFrozenEpsilons classes
Selected publications:
Horni et al. (2012b); Horni (2013)

27.2 Introduction

Generally speaking, destination choice represents an optimization problem, where every agent
searches for his or her optimal destination according to an objective function, subject to various
constraints such as the agent’s travel time budget–as well as interactions with other agents–while
competing for space-time slots in the infrastructure. The MATSim destination innovation module
provides a problem-tailored heuristic algorithm to solve this problem.

MATSim’s iterative base requires a mechanism (the main component of the destination innova-
tion module), ensuring consistent probabilistic choices over the course of iterations.

Unobserved heterogeneity, usually dominant in destination choice, is captured in the adaptable
objective function by random error terms (Horni et al., 2012b; Horni, 2013).

As well as considering competition for road infrastructure, the destination choice module can
also be con�gured for activities infrastructure (for example, at shopping malls’ parking lots) as
shown in Section 27.3.5 and by Horni et al. (2009).
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27.3 Key Issues in Developing the Module

Key issues of integrating destination innovation into MATSim include behavioral and algorith-
mic problems. On the behavioral side, speci�cation of choice sets for model estimation has not
yet been solved. On the algorithmic side, as mentioned above, destination innovation is, in prin-
ciple, an ordinary optimization problem. However, as agents interact, and choices are embedded
in a highly dynamic context, the problem becomes complex, particularly because targeted sce-
narios are usually large-scale. Thus, as in real-world optimization problems, solutions must be
based on problem-tailored heuristics (Michalewicz and Fogel, 2004). Construction of a search
space and subsequent evaluation of the search space’s elements are important MATSim destination
innovation components.

The main component however, is a mechanism to generate consistent random draws over
iterations necessary to include the objective function’s error terms (see next Section 27.3.1). This
mechanism is also applicable to other choice dimensions.

27.3.1 Error Terms

As described in Chapter 49, MATSim—as a utility-maximizing model—is related to the dis-
crete choice framework, meaning that this framework can productively guide the MATSim utility
function speci�cation. Utility in discrete choice models is composed of a deterministic part and
a random error term representing the unobserved heterogeneity, i.e., it subsumes, both truly,
i.e., inherently random, decisions and the modeler’s missing knowledge about the choice and its
context.

In MATSim, the utility function for route, mode and time innovation does not contain an explicit
random error term (yet). This is at least partially compensated through replanning stochasticity, in
Chapter 49 denoted by the scale parameter µ and η. An example for this might be: route and time
choices are usually subject to signi�cant competition. The co-evolutionary algorithm of MATSim,
detailed below, essentially assigns the resources in a random manner to the persons. For exam-
ple, two identical persons may end up with di�erent routes, according to the order in which they
undergo the replanning. Essentially, this means that an (implicit) random term is present in the
choice making.

The above, however, does not add enough unobserved heterogeneity to destination choice. Fur-
ther problems might, or might not, appear when trying to interpret this randomness, since it is
added implicitly and somewhat unsystematically. Thus, an explicit random error term εn`q for
every person n, alternative ` and activity q, held stable over the iterations, is added to the scor-
ing function during the running of the destination innovation module (Horni, 2013). Research
about the necessity of error terms for the remaining choice dimensions is required, as discussed in
Section 97.4.6.

27.3.2 Quenched Randomness

Due to random error terms, discrete choices are quanti�ed by probabilities; for example, for the
logit model, as pn`q = exp(Vn`q)/

∑
j∈L exp(Vnjq), where Vn`q is person n’s systematic utility of

alternative ` for activity q. When drawing from the distribution speci�ed by pn`q for a popula-
tion, the aggregate choices are reproduced. This is basically also true when applied in iterative
frameworks. However, iterative frameworks are usually associated with some kind of learning or
relaxation mechanism, which is heavily distorted by repeatedly and randomly drawing from pn`q
in every iteration. In this case, the εn`q e�ectively �uctuate from iteration to iteration, which is
disastrous for the algorithm’s convergence and behaviorally implausible.
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Instead, random error terms εmust remain �xed from iteration to iteration. The optimization is
then performed as a deterministic search, based on the resulting utilities Un`q, i.e., an alternative
` for person n; activity q is selected as

argmax
`∈choice set

Un`q = Vn`q+ εn`q .

This includes, via the systematic part Vn`q, the disutility of traveling to destination ` for activity q.
As stated above, random error terms must remain the same over the iterations (also discussed in

Chapter 49). In physics, this approach would be called “quenched” (sometimes also “frozen”) ran-
domness; all randomness is computed initially and then attached to particles or destinations, rather
than instantaneously generating it, which would be called “annealed” randomness. Two natural
approaches for implementing quenched randomness are as follows:

(a) Freezing the applied global sequence of random numbers, meaning that a Monte Carlo method
with the same random seed is used before and a�er introduction of a policy measure and over
the course of iterations. Thus, error terms should come out the same way before and a�er the
introduction of the policy measure. Di�erences in the outcome can thus be directly attributed
to the policy measure.

(b) Computing and storing a separate εn`q for every combination of person n, alternative ` and
activity q.

Both strategies have �aws. Approach (a) is only an option if one is certain about every single
aspect of the computational code. Literally, one additional random number, drawn in one run,
but not in the other, completely destroys the “quench” for all decisions computed later in the
program. Consistency is thus hard to achieve, especially in parallel or even distributed comput-
ing environments; substantial machinery is necessary to ensure consistent choices. In a modular
environment, as in MATSim, designed for external plugging-in of users’ own modules—possibly
drawing their own random numbers—the danger of destroying the quench is prohibitively high
and thus approach (a) is impractical.

Approach (b) is certainly more robust. However, for large numbers of decision makers and/or
alternatives, storing error terms is di�cult. For destination innovation, one quickly has 106

decision makers and 106 alternatives, resulting in 4 · 1012Byte= 4TB of storage space.
One may argue that this should not be a problem, since a normal person will rarely consider more

than the order of a hundred alternatives in their choice set, reducing the computational problem.
Aside from the necessity of storing every decision maker’s choice set, this converts the compu-
tational problem into a conceptual one, since a good method to generate choice sets then needs
to be found. With more conceptual progress, this may eventually be an option; at this point, a
conceptually simpler approach is preferred.

The solution developed below is generally applicable in econometric microsimulators. The same
stable error term can be re-calculated on the �y by using stable random seeds sn`q = g(kn,k`,kq),
containing uniformly distributed random numbers associated with k, `, and q. That is, for each
person n, a random number kn is generated and stored; the same is done with each destination `.
Value for the activity q can be derived from its index in the plan, possibly combined with the
person’s value kn. This reduces the storage space dramatically, from Nq ·Nn ·N` to Nq(Nn+N`),
where Nn is the number of persons or agents and N` is the number of destinations and Nq is
the average number of discretionary activities in an agent’s plan. This means that storage space
is reduced to approximately 2 · 4 · 106Byte= 8MB, which can be easily stored on any modern
machine.

Distribution of these seeds is essentially irrelevant; any error term distribution can be generated
from any basic seed distribution. In the current version, g(kn,k`,kq)= (kn+ k`+ kq)× vmax is
used. vmax is the maximum (long) number that can be handled by the speci�c machine.
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To evaluate utility for a person n visiting the destination ` for activity q, a sequence of Gumbel-
distributed random numbers seqn`q is generated on the �y for every person-alternative-activity
combination using the seed sn`q. Some random number generators have problems in the ini-
tial phase of drawing, e.g., the �rst couple of random numbers are correlated or never cover
the complete probability space. As in our procedure, the random number generator is constantly
re-initialized; for these technical reasons, the error term εn`q is not derived from the �rst element,
but from the mth element of the sequence seqn`q[m]. Here, m is set to 10. This procedure is valid, as
the set of all mth elements of all di�erent sequences is also a pseudo-random sequence, following
the same distribution as the sequences seqn`q; clearly, true random number generators relying on
physical phenomena, such as hardware temperature, are not applicable.

27.3.3 Search Space Construction and Evaluation

MATSim destination innovation is based on best-response, rather than random mutation; in every
iteration, the best current alternative, including the εn`q, is chosen. This works as long as inter-
iteration changes are small, which usually happens, given by the relatively small share of agents who
re-plan. The best-response approach is adopted due to the usually huge number of alternatives in
combination with the search space characteristics. The discrete search landscape is characterized
by random noise, because error terms are not spatially correlated (see Figure 27.1(a)). For such
problems—as opposed to continuous landscapes (see Figure 27.1(b))—e�cient search methods,
such as local search methods, generally do not work.

When searching for the best choice, the large number of alternatives—prohibiting exhaustive
search—is restrained as follows (for the detailed derivation see Horni, 2013, p.51 �.). It is as-
sumed that travel costs are always negative and that a person drops activities with negative net
utility. Then, the maximum potential travel e�ort a person is willing to invest is constrained by the
maximum error term per person and activity. This approach is promising, as very large values for
Gumbel-distributed variables are rare, meaning that a huge space must be searched for only a few
persons.

This search space reduction saves a great deal of computation time; however, it is still unfeasi-
ble and further speed-ups are necessary. Most computation time is due to travel time calculation,
i.e., due to routing, for evaluation of the alternatives in the search space. To reduce these huge rout-
ing costs, the Dijkstra (Dijkstra, 1959) routing algorithm is not only applied forward—providing
one-to-all travel times–but also backwards, using an average estimated arrival time as initial time.
This is an approximation; thus, a probabilistic best response is applied, justi�ed by the assumption
that, during the course of the iterations, the probabilistic choice will reduce the errors incurred by
approximating travel times.

With this procedure, the required computational e�ort is dramatically reduced, allowing appli-
cation of destination innovation to large-scale scenarios.

27.3.4 Destination Choice Set Speci�cation

Choice set speci�cation is natural for choices with few alternatives; but in contrast, for problems
with a large universal choice set, specifying individual choice sets becomes a challenging compu-
tational and behavioral issue. This is particularly true for spatial choices like destination or route
choice (e.g., Pagliara and Timmermans, 2009; Thill, 1992; Schüssler, 2010; Frejinger et al., 2009b).
Estimates are sensitive to choice sets; at the same time, no established choice set de�nition proce-
dure exists for spatial problems. This means that choice sets and, hence, estimates are dependent
on the modeler.

An important extension of the standard discrete choice modeling approach to treat this prob-
lem is formed by stochastic choice set models, founded by Manski (1977); Burnett and Hanson
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(b) Spatially correlated error terms.

Figure 27.1: Search space: The search algorithm must be able to handle correlated, as well as
uncorrelated, error terms as given by the MNL model. Local search methods, such as hill-
climbing algorithms are only able to handle continuous search spaces; thus, for situation (a),
a best-response global search algorithm is required.

(1979); Burnett (1980); these integrate the choice set formation step into the estimation procedure
by jointly estimating choice set selection and selection of a particular alternative of this choice set
(Manski, 1977; Ben-Akiva and Boccara, 1995). Probabilistic choice set formation is conceptually
appealing; choice sets are, in principle, not restrained a priori by exogenous criteria, as in stan-
dard choice set speci�cation. However, the procedure is generally associated with combinatorial
complexity, making it computationally intractable. As a consequence, practical approaches also
require mechanisms to reduce complexity of the choice set speci�cation problem (e.g., Ben-Akiva
and Boccara, 1995, p.11). Zheng and Guo (2008), for example, make the moderate assumption of
continuous store choice sets (i.e., sets without “holes”) around the trip origin, while Ben-Akiva
and Boccara (1995)’s random-constraints model exploits additional information on alternatives’
availability for individuals.
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In conclusion, the destination innovation set speci�cation problem is still unsolved, meaning
that estimated models can only be fully consistently applied for the region where the model was
estimated. For MATSim, destination choice model estimation e�orts are reported in Horni (2013,
Chapter 5).

27.3.5 Facility Load

The in�uence of interaction in transport infrastructure for people’s route and departure time choice
was recognized almost a century ago (e.g., Pigou, 1920; Knight, 1924; Wardrop, 1952). It can
also be reasonably assumed that agent interaction in activities infrastructure a�ects travel choices
(Axhausen, 2006). Marketing science provides ample evidence that agent interactions in�uence
utility (positively or negatively) of performing an activity (Baker et al., 1994, p.331), (Eroglu and
Harrell, 1986; Eroglu and Machleit, 1990; Eroglu et al., 2005; Harrell et al., 1980; Hui and Bateson,
1991; Pons et al., 2006).

In Horni et al. (2009), based on the Zürich scenario, a model is presented introducing compe-
tition for activity infrastructure space-time slots. The actual load is coupled with time-dependent
capacity restraints.

Activity location load, computed for 15 minute time bins, is derived from events delivered
by the mobsim. The load of one particular iteration, combined with time-dependent activity
location capacity restraints, is considered in the agents’ choice process of the succeeding itera-
tion. In detail, this means that the utility function term Sdur,q, described above, is multiplied by
max(0;1− fload penalty), penalizing agents dependent on the load of the location they frequented.
fload penalty is a power function; this has proved to be a good choice for modeling capacity restraints
(remember that the well-known cost-�ow function by U.S. Bureau of Public Roads (1964) is a
power function). To introduce additional activity location heterogeneity, an attractiveness factor
fattractiveness is introduced, de�ned to be logarithmically dependent on the store size given by the
o�cial workplaces census.

Also for demonstration purposes, capacity restraints are exclusively applied to shopping loca-
tions; in principle, leisure activity locations could be handled similarly. However, deriving capacity
restraints for leisure activity locations is expected to be much more di�cult than for shopping loca-
tions, because far less data is available for leisure locations and capacity restraints vary much more
between di�erent leisure locations than between di�erent shopping activities (hiking versus going
to the movies might be a good example).

The model allows assignment of individual time-dependent capacities to the activity locations.
For the sake of demonstration, the capacities of all shopping facilities can be set equal, where their
values can be derived from the shopping trip information given in the Swiss microcensus (Swiss
Federal Statistical O�ce (BFS), 2006). The total daily capacity is set so that the activity locations
located in the Zürich region satisfy the total daily demand with a reserve of 50 %. In detail, the
capacity restraint function for a location l is as follows:

fload penalty,` = αl ·

(
load`

capacity`

)β`
with α` = 1/1.5β` , β` = 5. fload penalty,` is the penalty factor for location ` as described above.

Simultaneous computation of all agents’ score reduction avoids the last-record problem dis-
cussed in Vovsha et al. (2002). There, a sequential choice process is proposed; alternatives are
removed from later travelers’ choice sets if locations are already occupied by earlier travelers.
Thus, travelers’ order is speci�ed arbitrarily; the last-record problem (last travelers must go a long
distance to �nd an available location) is signi�cant when modeling heterogeneous travelers.

As expected, the constrained model improves result quality by reducing the number of implau-
sibly overcrowded activity locations.
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27.4 Application of the Module

The destination innovation module has been successfully applied for the Zürich scenario
(Chapter 56), as reported in Horni (2013, p.99), for the Tel Aviv model (see Chapter 91) and for the
MATSim 2030 project. Figure 27.2 and Figure 27.3 show that, through error term scaling, distance
distributions can be nicely �tted, decreasing count data error.

27.5 The Module in the MATSim Context

The destination innovation module explicitly incorporates unobserved heterogeneity through
random error terms; the standard MATSim utility function, however, does not contain error terms.
Randomness measured in empirical data is included implicitly through the simulation process
stochasticity, including possible randomness in the choice itself. For destination innovation, this
has led to a dramatic underestimation of total travel demand, making inclusion of unobserved
heterogeneity inevitable. Clearly, the problem is the impossibility of making all choices at the same
level; destination choice is conditional on mode choice which, in turn, is conditional on route
choice. Hierarchical choice modeling has clearly showed that randomness, expressed by the logit
model scale parameter, needs to be larger in higher level decisions. This chapter addresses replacing
the need for more randomness in the choice model by directly including randomness into the utility
function; that randomness must be quenched, otherwise the iterative procedure will just average
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Figure 27.2: Error term runs for the Zürich scenario.
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Figure 27.3: Daily tra�c volumes for 123 links compared to tra�c counts. Per link k the relative
error is used, i.e., (volsimulated,k− volcounted,k)/volcounted,k.

it out. Whether the standard utility function might also pro�t from the innovations made for this
module should be a topic for future research .

MATSim replanning o�ers di�erent strategies to adapt plans, ranging from random mutation
via approximate suggestions to best response answers. Destination innovation is based on best
response to handle the sheer size of the alternatives set.

Although the destination innovation utility function is based on discrete choice framework,
some conceptual di�erences about the common discrete choice models application persist. As
shown above, there is no drawing from discrete choice models, but instead, maximization of an
iteration-stable utility function. The set of alternatives is not necessarily limited a priori; thus, we
use the notion of a search space and not of a choice set here.

27.6 Lessons Learned

Two interesting lessons were learned while developing the destination innovation module: �rst, a
lesson on preferences and space interdependence and the necessity to evaluate them in combina-
tion. When looking at distance distributions (e.g., Figure 27.2) one might think that the functional
form directly represents the preferences, but this is not necessarily the case. In our simulations, it
is the result of a linear travel disutility, but applied in geographic space, where number of oppor-
tunities increases with the square of the radius, in other words, with the square of travel distance.
A similar emergent e�ect appears when scaling random error terms. Although both negative and
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positive error terms are enlarged and the average remains stable, distribution gets more skewed
toward the tail; for agents’ choices, maximum values—not average values—are relevant.

The second lesson concerns simulation results’ variability. Although random elements are
not present only in destination choice, it was the largest contributor of endogenous variability
when it was developed, necessitating the experiments presented by Horni et al. (2011a) (see also
Section 48.4).

27.7 Further Reading

The main information source is Horni et al. (2012b); Horni (2013); technical details and documen-
tation are available at Horni (2016) and in javadoc. Further reading related to destination choice is:
Horni et al. (2013b),for parking, or Horni et al. (2012a), about coupling customers’ and retailers’
choices or, in other words, supply and demand.






