
CHAPTER 31

Making MATSim Agents Smarter with the
Belief-Desire-Intention Framework

Lin Padgham and Dhirendra Singh

31.1 Basic Information

Entry point to documentation:
http://matsim.org/extensions→ bdiintegration
Invoking the module:
See http://matsim.org/extensions→ bdiintegration
Selected publications:
Padgham et al. (2014)

31.2 Introduction

In this chapter, we introduce a MATSim extension allowing a developer to program (some of)
an agent’s decision-making in a BDI (Belief Desire Intention) system, while actual actions and
environment percepts occur within MATSim.1 This allows sophisticated modeling of agents within
a BDI framework, using the concepts of goals, hierarchical abstract plans (containing sub-goals)

1 This work was supported by the ARC Discovery DP1093290, ARC Linkage LP130100008 and Telematics Trust grants.
We would like to thank Agent Oriented Software for use of the JACK BDI platform and Kai Nagel, Todd Mason,
Sewwandi Perera, Edmund Kemsley, Oscar Francis, Daniel Kidney, Andreas Suekto, Qingyu Chen, and Arie Wilsher
for their contribution to the BDI platform integration framework and to these applications.

How to cite this book chapter:
Padgham, L and Singh, D. 2016. Making MATSim Agents Smarter with the Belief-Desire-Intention Frame-

work. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim,
Pp. 201–210. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.31. License: CC-BY 4.0

202 The Multi-Agent Transport Simulation MATSim

and percepts (information from the environment), as well as information about the current
situation. For example, we used it to model residents in a bush�re2 evacuation, as well as an inci-
dent controller in an evacuation scenario. The residents may receive information about the bush�re
from the �re simulation, as well as warnings and messages from the incident controller agent.
They may well have to pick up children, check on neighbors and communicate with other family
members, etc. Their plans enable decision-making, which will result in actions executed within
MATSim.

In standard MATSim usage, intelligence within individual agents’ behavior arises from
co-evolutionary algorithms in the replanning phase. This is based on agents evaluating—via a scor-
ing function—the plan they have executed during a given day and modifying this to obtain a new
plan, until all agents have acceptable plans; the system then reaches a stable state. This approach,
however, only works for applications where one can assume that the agents adjust and re�ne their
behavior over many iterations, to eventually obtain their standard modus operandi. For applica-
tions such as emergency management, agents must react immediately to the situation as it evolves,
doing so in an “intelligent” manner.

The chapter on Within-Day Replanning introduces two approaches to the mobsim component
which address the need to be more reactive to an evolving situation. The �rst allows a central-
ized MATSim process to identify sets of agents that should have their plans modi�ed, then runs
one or more processes to adjust agents’ plans. The second rewrites the agent, so that instead of
following a speci�ed plan, the agent invokes a decision-making process at all possible decision
points. By integrating a BDI agent platform with MATSim (Padgham et al., 2014), we allow au-
tonomous individual decision making to be programmed in specialized and powerful systems
developed speci�cally for this purpose, balancing reactive behavior and goal-based commitment.
Di�erent BDI platforms have di�erent strengths, but are, in general, based on a simpli�ed psycho-
logical/philosophical view of how people behave, facilitating a high level speci�cation of complex
human behavior. These systems have been demonstrated to be very e�cient for building complex
applications (Ben�eld et al., 2006). Provided the appropriate system interface support is developed,
any BDI system can be coupled to MATSim, as described here. Until now, we have used three dif-
ferent BDI systems, for which the system level interface is available. The decisions made in the BDI
system are then inserted into the relevant agents’ MATSim plans, allowing the MATSim agents to
operate in the same e�cient manner as in standard MATSim.

31.3 So�ware Structure

Our framework supports independent execution of MATSim and the BDI platform, with synchro-
nization via the infrastructure provided. They can either run within a single process (in separate
synchronized threads, or sequentially in a single thread), or in two separate processes (synchro-
nizing using inter-process communication, such as sockets). The former is, of course, considerably
more e�cient. Conceptually, for every MATSim agent whose decision making is to be carried out
in the BDI system, a BDI agent must be created. The BDI counterpart can be regarded as “the brain”
associated with the MATSim agent. It is possible to have BDI agents with no MATSim counterpart
and vice versa. For example, in our bush�re application, the incident controller has no MATSim
agent, as he does not move on the road network. He receives information about the �re and has
some static location information; his role in the simulation is to issue warnings and evacuation
advisories, which, in turn, a�ect the resident agents. There may also be MATSim agents that do
not have a BDI counterpart. For example, in a taxi modeling application, there may be MATSim

2 Bushfire is the Australian term for what is otherwise known as a wildfire or forest fire.

Making MATSim Agents Smarter with the Belief-Desire-Intention Framework 203

BDI System ABM System

actions

percepts

status

A1

A2

A3

A1

A2

A3

Figure 31.1: Conceptual BDI-ABMS integration architecture.
Source: Figure adapted from Padgham et al. (2014, Figure 1) distributed under the Creative
Commons Attribution Non-Commercial License

agents using the road network, but with no need for complex decision-making modeling; these
may exist only within MATSim.

Figure 31.1 shows the two parallel systems’ basic architecture and the information passed
between them at each time step.

The structure of the data components passed between the MATSim agent and its BDI counter-
part is shown in Table 31.1 and consists of BDI Actions3 , Percepts and Queries. As indicated in
Figure 31.1, BDI-actions are always initiated by the BDI system. Their status �eld, however, can be
modi�ed by both systems. When a BDI action such as DriveTo(loc) is decided by the BDI agent,
the BDI system sets the status of this action as “INITIATED”. MATSim will then set its status to
“RUNNING”, which will probably remain in this state for several steps. When the loc destination
is reached, the MATSim routine will set the status to “PASSED” and the BDI system will continue
reasoning about the next stage of agent behavior. If desired, the MATSim routine can also detect sit-
uations which should be conveyed as “FAILED” and pass this to the BDI counterpart. For example,
if there is a BDI action to meet at a location and time and the MATSim agent is delayed in traf-
�c, the BDI action implementation in MATSim can be programmed to detect the missed deadline
and set the status to “FAILED”, at which point the BDI agent will attempt failure recovery (as part
of the BDI infrastructure). The BDI system can also set the status to “ABORTED”—for example,
if information arrives requiring a di�erent action—in which case, it is canceled within MATSim.
The BDI system can also set status to “SUSPENDED”, though this is not currently implemented.

To manage BDI actions, we provide a MatsimAgentManager class responsible for updating
BDI actions status for all agents. At each step, the MatsimAgentManager.updateActions(...)

function identi�es (from the information package supplied by the BDI system) all agents initi-
ating, aborting, or suspending actions. These are the agents which may require their MATSim
plans to be modi�ed. For each agent that has some action with s status “INITIATED”,
the action is passed to the agent’s action handler class MatsimActionHandler via a call to
MatsimActionHandler.processAction(agentID, actionID, params). This function, based on the
action, calls an appropriate helper function that performs required modi�cations to the MATSim
plan and other relevant bookkeeping, to ensure that success and failure are observed (via

3 We call these actions BDI Actions to distinguish them from actions in the ABMS (Agent-Based Modeling and
Simulation) which may include lower level or additional actions.

204 The Multi-Agent Transport Simulation MATSim

Components of The Data Package Provided to Speci�c Agents Via The Interface:

Component
Type

Component �elds

BDI action < instance id,action type,parameters, status>
Percept < percept type,parameters,value> (parameters and value may be complex

objects)
Query < query, response>

BDI Action Status:
State Description

INITIATED Initiated by BDI agent and to be executed
RUNNING Being executed, set by the simulation agent
PASSED Completion detected and set by the simulation agent
FAILED Failure condition detected and set by the simulation agent
DROPPED Aborted by the BDI agent
SUSPENDED Temporarily suspended by the BDI agent

Table 31.1: Data Passed Between The BDI and ABMS Systems

appropriate MATSim callbacks) and that status is reported back to the BDI system. For
example, for a DriveTo action, a processDriveTo(agentID, loc) function is executed to deter-
mine the leg associated with loc, obtain a route using the MATSim router and insert this into the
MATSim agent’s plan. The standard MATSim execution then follows this plan at each subsequent
step. If the processAction function returns a success status indicating that the action was handled
successfully, then updateActions changes the status for this action to “RUNNING”; otherwise, it
sets it to “FAILED.”

Sometimes, a running action can also fail in the ABMS for some reason. For instance, a DriveTo

(loc) action could fail due to a road-closure in a bush�re evacuation simulation. While this
functionality is supported by our infrastructure, it has not yet been used in the applications we
have built with MATSim. Failing actions will soon be added for some applications. Aborting and
suspending are also not currently implemented for MATSim. This would be accomplished by hav-
ing appropriate functions declared which reset the plan contents of the agent to a ’holding state’
(activity with in�nite end time), maintaining the removed contents of a suspended plan in some
data structure for eventual resumption.

Percepts capture information identi�ed as necessary for the BDI agent’s reasoning. Typically,
this is any information leading to triggering of a BDI-goal, or causing an executing goal/plan to
be re-evaluated. Approaching a destination is one example. MATSim callbacks are used to cap-
ture the relevant information within MATSim; this is then provided to the BDI counterpart via
our infrastructure. The appropriate MATSim event is caught with AgentActivityEventHandler.

handleEvent(event-type). The handleEvent(event-type) function then �rst checks whether the
agent receiving the event is one registered for a percept that triggers with this event type, and if so,
calls the appropriate function to calculate the percept’s value and add it to the percept container
for that agent, to be sent to the BDI system. Termination conditions (PASSED and FAILED) of BDI
actions are also similarly detected.

Instead of passing back the percept in these cases, the relevant action and its status is edited
and passed back. For example, a BDI action DriveTo(loc) should succeed when the agent reaches
the link closest to this location. To achieve this, we implement handleEvent(PersonArrivalEvent),
which will then trigger for every agent arriving anywhere. If the agent has a current (DriveTo)
BDI action being monitored, then arrivedAtDest(agentID,loc) is called to ascertain whether the

Making MATSim Agents Smarter with the Belief-Desire-Intention Framework 205

PersonArrivalEvent caught does match the link closest to the coordinates of the desired destina-
tion. If it does, the action status of that DriveTo action for that agent is changed to PASSED and the
action is removed from the monitoring list.

This approach conveniently uses MATSim callback infrastructure. However, we note that it will
generate an event that must be processed any time any agent arrives anywhere, although most will
not be an arrival at a desired destination. This is a substantial overhead; we may eventually consider
collecting (some) percepts and state information for determining action status, in a separate, more
e�cient global processing at the end of the step.

Queries are de�ned for any information that the BDI system may want to request from MATSim
during its reasoning process. Typically, queries are based on plans’ context conditions, which must
be evaluated to determine if a plan is applicable. Each query structure must be de�ned and the
code must be supplied on the MATSim side to call the relevant functions to provide the response.
Similar to the MatsimActionHandler class, we have a MATSimPerceptQueryHandler class containing a
queryPercept(agent,query,response) function. This function then uses the query string received
to extract the percept type and make a speci�c function call to obtain and provide the results. For
example, if an agent agentID sends a queryPercept(agentID, ‘‘RequestLocation agentX’’, loc)

query to request the location loc of some agent agentX (possibly itself), then the queryPercept

function will execute the clause:

if percept_type = "RequestLocation"
loc = getLocation("agentX")

The agentID of the requesting agent, obtained from the data package, is always provided to the
query response function, in case it is required, although in this case it is not. Queries can be made
at any point during the BDI execution and are answered immediately. They have no e�ect on the
MATSim simulation.

A number of commonly used BDI actions and percepts are de�ned as part of our integration
infrastructure. New ones can be added as part of developing a speci�c application, as described in
Section 31.4. This structure allows all high-level decision making to be carried out by individual
agents, within the BDI-system, which is designed and optimized for this purpose with regard to
both representation and execution. On the MATSim side, speci�ed functions simply modify the
agents’ MATSim plans (in parallel, if desired), retaining the standard MATSim simulation execu-
tion where each agent just follows its MATSim plan. This approach allows for both simplicity and
e�ciency at the lower level.

31.4 Building an Application Using BDI Agents

We focus here only on what must be done to integrate BDI agent reasoning into MATSim. To learn
about BDI design and development, we refer the reader to Padgham and Winiko� (2004), as well
as the excellent “practicals” (tutorials) available as part of the JACK platform4 . In Figure 31.2, we
show part of a taxi agent design, in an application involving taxis operating within MATSim. Here,
the percept ClosetoDest (potentially) triggers a plan GrabJob. Plans have context conditions which
indicate whether or not they are viable in the current situation, as a response to a percept, or a way
of achieving a goal. Let us assume, in this example, that the plan GrabJob has the context condition
(Location(self,loc)) ∧ board.job.loc ∧ (distance(board.job.loc,loc) < 4km). Thus, the
�gure at the le� of the diagram can be understood as the rule:

ClosetoDest∧ Location(self,loc)∧ board.job.loc∧ (distance(board.job.loc,loc)< 4km)→
GrabJob

4 http://aosgrp.com/products/jack/

206 The Multi-Agent Transport Simulation MATSim

Figure 31.2: Excerpt of taxi design.

There are two pieces of information in this rule that must come from MATSim: �rst, the agent
is close to its destination (ClosetoDest) and second, the agent’s current location (Location(self,
loc)). We could have MATSim send the agent location at every step. However, this is unnecessary
overhead; instead, we send ClosetoDest as a percept. This requires the BDI agent to query its
location to evaluate whether there are pending jobs whose location necessitates triggering some
instance of GrabJob. This gives us an example of a percept and a query required in MATSim. On the
right hand component in Figure 31.2, we see four di�erent actions which will have a correspond-
ing BDI-action on the MATSim side. We will focus here on the DriveTo action, but the PickUp and
DropOff would be realized in a similar way, using MATSim activities rather than legs.

The following must usually be done:

• Every plan trigger which is information from MATSim must be de�ned as a percept.
• All information required from MATSim, that is not a trigger, must be de�ned either as a percept

(and then stored locally), or as a query.
• All actions which should be executed in MATSim must be de�ned.

In the rest of this section, we describe exactly what must be provided in the MATSim application
�les for each of these to work as expected. Instructions and examples for the BDI application can
be found in the integration repository (noted at start of chapter).

31.4.1 The ClosetoDest Percept

All functions for collecting percepts for the BDI system are de�ned in the
AgentActivityEventHandler class. Perusal of existing functions can ascertain whether the
desired percept is already calculated. For example, arriveAtDest is already de�ned for use as a
BDI percept. If the percept collection function already exists, the developer must ensure that the
appropriate agent type is registered for this percept within the relevant function. For example, in
arriveAtDest() we have:

if agent.type = taxi
AND agent.loc = dest(agent) * obtained from infrastructure data *\

// collect and package this percept

If we now want this percept provided to agents of type commuter, we must make the �rst line:

if ((agent.type = taxi) OR (agent.type = commuter))
AND agent.loc = dest(agent) * obtained from infrastructure data *\

// collect and package this percept

Making MATSim Agents Smarter with the Belief-Desire-Intention Framework 207

The arriveAtDest function is triggered by the MATSim LinkEnterEvent event using MATSim
provided callbacks. Thus, we have de�ned handleEvent(LinkEnterEvent) to call all percept
collection functions triggered by this event – in this case arriveAtDest.

The ClosetoDest percept will be triggered by the same MATSim event LinkEnterEvent, so to add
this, we must add the call to ClosetoDest in the handleEvent(LinkEnterEvent) and then de�ne
our ClosetoDest function within the AgentActivityEventHandler class. We only want to send the
ClosetoDest percept when we �rst come within the de�ned distance of our destination, not at every
step. Therefore, the ClosetoDest function must �rst check whether this percept has already been
sent to this agent, for the current destination. If so, nothing more is done. If not, it is ascertained
whether the link entered is within the desired “close-to” distance and, if so, the percept is registered.
For e�ciency, the �rst link “close-to” the dest can be calculated and recorded when the DriveTo

action is initiated; in which case, one must only check whether the entered link-ID is the same as
the recorded “close-to” link-ID.

In principle, percepts could also be calculated in a function executed a�er all agents had been
stepped. The important thing is that when a percept occurs, it is recorded in the percept data pack-
age for that agent. Further work is required to ascertain which percept collection methods will be
most e�cient with very large numbers of agents.

31.4.2 The RequestLocation Query

Queries are de�ned in, and managed through, the MATSimPerceptQueryHandler class. A function
queryPercept(agent,query,response) responds to a query by extracting the speci�c query and
calling the relevant de�ned function. So, for example, to respond to the queryPercept(ownID,

‘‘RequestLocation agentID’’,loc) query from an agent, queryPercept will contain the code:

if percept_type = "RequestLocation"
loc = getLocation("agentID")

The getLocation function will then ascertain the location of agentID, storing the value in loc. If
the query is already de�ned in MATSim, nothing further is required to use it in an application.

31.4.3 The DriveTo BDI-Action

The DriveTo(loc) BDI action is, of course, the most basic and commonly used BDI action in
MATSim and is already implemented in our infrastructure. As long as the appropriate BDI
action and parameters are passed in the information package from the BDI system, nothing further
is required within MATSim. However, for the purpose of illustration, we will assume it has not yet
been implemented and we will go through the steps of de�ning a new BDI action with this as an
example.

The MATSimActionList class de�nes mappings for all BDI actions in the system and the MATSim
function calls that realize those BDI actions. Any new BDI action must �rst be added to this list.

The MATSimActionHandler de�nes all functions that realize BDI actions, as well as a
processAction function which handles all BDI action strings from the BDI system, calling the
appropriate helper functions. Thus any new BDI action must have its implementation de�ned
within this class and must have the appropriate call to the function added within processAction.
Let us call the relevant function that we will add processDriveTo. This function will always need
the agentID as a parameter, as well as whatever parameters are provided in the action package.

208 The Multi-Agent Transport Simulation MATSim

So, in our example, we will have the function processDriveTo(agentID, loc) which needs to be
de�ned. The function for the new action must perform two key tasks:

1. Obtain the MATSim plan of the relevant agent and modify it so that regular MATSim
execution of the plan will have the desired e�ect.
Generally, when the plan is accessed, it will have a single dummy activity with end-time
in�nity. The end time of this activity must be set to now and a leg must be instantiated with
the link corresponding to the destination loc as the end point and the links to be followed,
as calculated by the router. This leg must then be inserted into the plan, followed by a new
dummy activity instance with end time in�nity.

2. Place the action instance into the list of actions being monitored.

It is also necessary to set up recognition of when the action has �nished, so that this information
can be sent back to the BDI system and the agent can continue to reason about its next actions. This
is done via the MATSim callbacks provided, in the same way as detecting percepts. However, the
corresponding function, instead of placing information in the percept package for the agent, will
modify the status of the relevant BDI action instance in the information package to PASSED and
remove the instance from the list of actions being monitored. It is also possible to de�ne a condition
where the action should be considered FAILED and to detect this in a similar way. Alternatively,
failure can be managed by sending a percept, and having the BDI agent abort the action as a result5 .

The current structure assumes that multiple actions of a single agent cannot be executed in par-
allel (a reasonable assumption for MATSim). It is the responsibility of the BDI system to allow only
one active BDI action per agent.

Further instructions, as well as examples, can be found in our BDI-MATSim integration
repository.

31.4.4 Discussion

An important aspect of a simulation design using BDI agents within MATSim is deciding on which
abstraction level BDI actions should be described. So far, we have tended to have BDI actions map
to a single leg or activity within a MATSim plan. However, it is certainly easy to think of BDI
actions that combine several such components. Straightforward examples would be grocery shop-
ping or taking kids to school - both involving a leg to a destination, an activity at that destination
and a return leg. There are no immediately obvious advantages associated with BDI actions at
higher abstraction levels (requiring coding of these actions in MATSim) vs using lower level BDI
actions with the higher level coded as BDI plans/goals. Future experience and experimentation
may provide insights to guide decisions.

31.5 Examples

Here, we describe two di�erent examples of BDI agents within MATSim: a bush�re evacuation
simulation, where MATSim is being used because tra�c �ow is a crucial component in this type
of evacuation and a taxi application developed as a demonstrator for integration of a BDI system
with MATSim (Padgham et al., 2014). We compare this approach to incorporating taxis with that
described in Chapter 23 for incorporating dynamically scheduled vehicles and with the approaches
to “within-day replanning” described in Chapter 30.

5 The simplest way in JACK is to use a maintenance condition relying on a belief that is modified as the result of a
percept.

Making MATSim Agents Smarter with the Belief-Desire-Intention Framework 209

Both our example applications use only the Mobsim engine (QSim) of MATSim and do no repeated
daily cycles with plan scoring and modi�cation. There are undoubtedly applications which could
bene�t from a combination of BDI agents and agents which evolve using MATSim’s scoring and
replanning, but we have not yet investigated them.

31.5.1 Bush�re Example

The bush�re example (currently) involves modeling of residents and their decision-making
behavior about what to do regarding a nearby bush�re. Potential driving activities include picking
up children from a school or other facility, checking on neighbors or friends and driving to a local
or more distant destination, possibly via a speci�ed route. Decision making may involve various
factors, such as time of day, ideas about what other family members are doing, warnings and noti-
�cations from emergency services, observations of neighbors, etc. In one approach, we focused on
incorporating well-developed and validated actual human decision making models in a bush�re
situation, developed by a collaborator. Our contribution has been to integrate this with MATSim,
using our integration framework, to provide data about any tra�c-related issues, thus providing a
more valuable simulation to planners. In our other approach, we model both residents and an in-
cident controller. Here, our focus has been on technical issues that involve providing an interactive
simulation suitable for use by emergency services personnel and/or communities for exploration
of potential strategies.

In the interactive version, the incident controller assigns speci�ed evacuation centers and routes
to residents in certain sections of the town being evacuated. Evacuation of di�erent areas may be
started at di�erent times. Residents follow the incident controller’s instructions with some prob-
ability based on their individual situations (currently modeled very super�cially). Following the
suggested route is achieved by driving via suggested way points (using the DriveTo BDI action),
with the BDI agent (potentially) re-assessing as each waypoint is reached. An alternative would
be to de�ne a new BDI action DriveToViaWaypoints. One issue that arose during the development
of this simulation involved road congestion; MATSim routing algorithms began developing very
circuitous routes, sometimes going back towards the �re threat. There were two issues illustrated
here about developing a realistic simulation: one was that, realistically, people would not choose
their routes based on global knowledge of current congestion; the other was that, regardless of
congestion, people would not head back into the �re zone. The current solution is to use a routing
algorithm not accounting for current road speeds, using only static speed limits. Going forward,
one may want to assume some knowledge of congestion (based on radio broadcasts or other social
media). An interesting future research question is how to best achieve responsibility sharing for
realistic behavior between MATSim and the BDI decision-making program, on route selection.

31.5.2 Taxi Example

The taxi prototype application was developed purely as a ’proof of concept’, allowing decisions
to be made dynamically by the BDI brain on an ongoing basis, then carried out by the MATSim
execution engine. There is a simple taxi administrator in the BDI system, which generates jobs,
posts them to a notice board and con�rms requests from taxis to take speci�c jobs. Taxis have
plans allowing them to take jobs from the board, go to a taxi rank, or take a break. A�er taking
a job from the board, the taxi drives to the pick-up address, picks up the passenger, then drives
to the destination and drops them o�. When the taxi approaches the destination, it looks on the
job board for nearby jobs; if something suitable is found, it requests it from the administrator. The
only BDI action implemented in this application is a simple DriveTo. The ClosetoDest percept was
used as described in Section 31.4. This application was tested with the Berlin road network and the
15 963 agents in the MATSim sample �les, with all agents operating as BDI taxi agents. Pro�ling

210 The Multi-Agent Transport Simulation MATSim

showed that, by far, the majority of the execution time was spent in route planning, with very little
in the BDI reasoning, or communication with the BDI system.

31.5.3 Discussion

Both evacuation and taxis are discussed in Chapters 30 and 23, as applications requiring a reactive
approach to planning, rather than iteration over many days to �nd the preferred plan. Chapter 23
discusses two implementation options: one which replaces the MATSim agent with an agent that
considers what to do at each relevant decision point (particularly intersections); the other leaves
the agent code as is, but modi�es the agent’s plans when certain events occur. The BDI approach
has the computational advantages of the latter, in that only a small subset of agents require changes
to their plans at any simulation step and many existing MATSim routines can be used to mod-
ify the plans. However, it also has many of the advantages of the former approach; agents are still
fully autonomous, with all decision making occurring within the BDI system. By registering for
any percepts which could potentially cause the agent to change its mind, the agent remains fully
in control at all times. However, it only needs to decide its next action when it completes the
current high level action—which will almost certainly be orders of magnitude less o�en than at
each intersection—or when a percept arrives indicating a need to reconsider. The provision of the
ability to drop current BDI actions (legs or activities) provides the same level of reactive auton-
omy as the fully reactive within day replanning agent, but probably at a lower computational cost.
Perhaps more important than the computational cost savings: agent decision making can be pro-
grammed in a framework that is at a high level of abstraction, using goals, plans and beliefs, within
existing highly e�cient platforms such as JACK (Winiko�, 2005), Jadex (Braubach et al., 2005) or
Jason (Bordini et al., 2007). Design tools for developing such agents also already exist (Padgham
and Winiko�, 2004). One study has shown that using a BDI language makes program develop-
ment hugely more e�cient than programming in Java (Ben�eld et al., 2006). The close mapping
between intuitively understandable design diagrams and the program code implementing this in
a BDI system is also highly advantageous for validating design of realistic agents with domain
experts. We have discussed design of resident agents in a sandbagging �ood scenario, with emer-
gency services personnel extremely experienced in that domain and found the representation to
be e�ective. We consider that this representational aspect can be a signi�cant advantage when
compared to programming the agent using the DynAgentLogic facility described in Chapter 23.

