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Abstract

With the increasing importance of VGI for GIScience, data quality becomes 
an issue of high concern. Particularly in collaborative mapping projects, when 
a group of public participants acts to collect, update and share information 
about geographic features, aiming to maintain and improve a geo-spatial data-
set. OpenStreetMap (OSM) is the most common VGI project that aims to 
develop free world digital map. Although several studies emphasized the posi-
tional accuracy and completeness of the OSM data, particularly in the urban 
areas, they also highlighted its problematic thematic accuracy. In this chapter, 
we handle the thematic accuracy quality measure from the facet of classifica-
tion. This chapter presents an approach for rule-guided classification for VGI 
projects. The proposed approach exploits the availability of data to learn the 
distinct characteristics of a set of geographic features. Afterwards, the learned 
characteristics are used to guide the contributors toward the most appropriate 
data classes, aiming to improve the data quality. The approach consists of two 
phases: Learning and Guiding phases. During the Learning phase, data mining 
algorithms are applied to learn the geographic characteristics of specific fea-
tures. The learning process results in a set of rules describing these features. The 
extracted rules are used to develop a classifier. Afterwards, during the Guiding 
phase, the developed classifier is used for several purposes; 1) acts to detect 
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problematic classified entities; and 2) guides and aids the contributors during 
the classification process. An empirical study followed by an implementation 
is conducted. The results show the feasibility of the proposed approach and 
highlight some limitations that could be improved in the future studies. The 
developed tool generates promising results and improves the classification of 
OSM dataset as well. 

Keywords

Volunteered Geographic Information (VGI), Spatial Data Quality, Thematic 
accuracy, Spatial data mining.

Introduction 

Crowd-sourcing, the advance of web technologies and the availability of loca-
tion sensing devices empower the public to produce contents associated with 
implicit or explicit spatial references. This form of User Generated Contents 
(UGC) has been known as Volunteered Geographic Information, in which a 
group of people voluntary acts to collect, update, and share spatial information 
(Goodchild 2007). VGI changes the conventional way of mapping activities 
resulting in collaborative mapping. Those activities were exclusively reserved – 
for a long time – for mapping agencies and specialized organizations. However, 
in collaborative mapping, participants are eager to collect information about 
geographic features producing maps (Gillavry 2004). Among others, Open-
StreetMap1 (OSM), Wikimapia2 and Google MapMaker3 are examples of col-
laborative mapping projects. OSM is the most prominent example of a VGI 
project; it aims to develop a free digital map of the world editable and available 
to everyone. During the last decade, several applications and services have been 
developed based on VGI data including – but not limited to – urban planning, 
environmental monitoring, crises management, map provision, etc.

Despite the increasing utilization of VGI data, its questionable quality still 
makes it – in some cases – of limited use (Elwood et al. 2012; Flanagin & Metzger 
2008). Among other reasons, contributors’ diversities and the fixable contribu-
tion mechanisms are resulting in data of heterogeneous quality (Mooney & 
Corcoran, 2012). Several studies assess VGI data by comparison with authori-
tative data sources. They conclude the promising completeness and positional 
accuracy of OSM data, particularly in urban areas (Haklay 2010; Neis et al. 
2011). In Hecht and Stephens (2014), the authors highlight the declining of 

	 1	 http://www.openstreetmap.org/
	 2	 http://www.wikimapia.org/
	 3	 http://http://www.google.com/mapmaker/
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data quality with the increasing distance form urban areas. Regarding particu-
lar features, Girres and Touya (2010), Haklay and Weber (2008) and Ludwig 
et al. (2011) emphasize the quality of street networks in France, the UK and 
Germany respectively. Whereas Arsanjani et al. (2015) and Arsanjani and Vaz 
(2015) address the promising contributions of land use/land cover features in 
OSM datasets. The studies highlight the heterogeneous data quality not only 
regarding the positional accuracy and completeness quality measures, but also 
regarding the problematic thematic accuracy of data (Haklay 2010; Neis et al. 
2011; Vandecasteele & Devillers 2013). Thematic accuracy implies correctness 
of the assigned classification to a given entity with that entity’s characteristics 
and its geographic context. Hence, this chapter tackles VGI data quality from 
the classification perspective. 

In OSM projects, the loose classification mechanisms lead to inappropriate 
classification of data. Whether a piece of land covered by grass is classified as 
park, meadow or forest, if a water body is classified as pond or lake, whether an 
area is classified from the land use perspective as residential or industrial, etc. 
All these classifications mainly depend on contributors’ perception (subjective 
classification).

Otherwise, the appropriate classification should reflect the inherent geo-
graphic characteristics of an entity (objective classification). For example, park 
and garden are likely used for entertainment and should contain amusement 
facilities like a playground, sport area, etc. and a lake is likely surrounded by a 
natural landscape and some facilities like tracks or benches, and is larger in size 
than a pond; whereas residential areas mostly cover residential buildings and 
likely contain some residential services, whereas industrial areas usually have 
industrial properties like a company, factory, etc. 

In this chapter, we propose a rule-guided classification approach. The 
approach aims to improve the data classification; it works to develop a recom-
mendation system able to guide the contributors towards appropriate classifica-
tion. The approach works to extract the distinct geographic characteristics of 
a specific feature and encode them in the form of rules. The rules are encoded 
together into a classifier. Afterwards, the developed classifier is applied to guide 
the contributors towards appropriate classifications. 

As an empirical study, we address the classification of some grass-related fea-
tures; where a piece of land covered by grass could be classified as forest, garden, 
grass, meadow or park. The classification of these features generates a challenge; 
they are commonly covered by grass, however each class has its distinct char-
acteristics. For example, the park and garden classes have entertainment char-
acteristics, the forest class are usually covered with trees or other woody vegeta-
tion and the meadow class has agricultural characteristics, etc. The findings are 
promising and show the feasibility of the approach.

This chapter is organized as follows: the 2nd section gives insights into the 
classification challenges in an OSM project, while the 3rd section presents 
the proposed approach of guided classification for VGI. An empirical study 
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is presented in the 4th section. The last section summarizes the findings and 
points out the future research directions.

Classification Challenges at OpenStreetMap

The OSM project is the most prominent collaborative mapping project: it cov-
ers most of the world, has more than 2 million registered users on October 
20154 and the OSM data is utilized in various services and applications. How-
ever, its problematic classifications make its data of limited use (Devillers et al. 
2010). In particular, the problematic classification results in inaccurate results 
and/or incomplete answers. The uncertainty, poor definitions and various indi-
vidual conceptualizations of geographic features are other reasons behind the 
problematic classification of data (Fisher 1999; Grira et al. 2010). However, 
regarding the OSM project, the problematic data classification might come 
back to the following:

•	Contributors’ heterogeneity: the project harnesses the contributors’ 
diversities to produce rich datasets. However, these diversities influence 
the resulting data quality (Coleman et al. 2009); contributors have various 
geographic and cartographic knowledge; this fact results in heterogeneous 
perceptions of the geographic features and consequently problematic clas-
sifications; what is perceived by a contributor as a park could be considered 
by another as a grass or garden type area.

•	Contribution methodologies: OSM supports the contributors’ hetero-
geneity by providing different methods of contribution. The most popu-
lar contribution methods are either by uploading GPS tracks directly or 
by editing geographic features over satellite images. The later method is 
the most common and is known as remote contribution. Figure 1 illus-
trates, a remote contribution (armchair contribution) process, in which a 
contributor uses an editor (e.g. JOSM) to contribute information about a 
specific feature by tracking the feature on satellite images. The contribu-
tion method itself generates a challenge during the classification process 
(Mooney & Corcoran 2012). For example, in Figure 1, the pieces of grass-
covered land look similar and their classifications, whether park, garden, 
grass or meadow, mainly depend on the contributors perception and need 
some sense of locality. Moreover, the loose tagging mechanism of OSM also 
results in problematic classifications. There is no restriction on the num-
ber of tags associated with a certain entity; an entity could be associated 
with no tags or several tags with endless combinations without any integrity 
checking mechanism. For example, an entity could plausibly be tagged with 
leisure=park, natural=grass, landuse=meadow and place=garden.  

	 4	 http://osmstats.neis-one.org/. 
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•	Ambiguous recommendations: the OSM project provides only recom-
mendations for contributors through its Wiki5 pages. These recommenda-
tions resulted from discussions between mappers. However, it is probable 
that most of the contributors do not spend enough time checking these 
recommendations. Furthermore, due to ambiguous terminologies (e.g. 
wood or forest, landuse or landcover, etc.), some recommendations might 
be conceptually misinterpreted, particularly by non-experts. For example, 
the unclear distinction between lake and pond classes results in a new class 
of lake; pond.

The previous points summarize the fundamental reasons behind the problem-
atic data classification of OSM. These challenges come up due to the nature 
of VGI and the OSM project in particular. There exist other reasons due to 
the nature of geographic data as well. Most geographic features are not well 
defined; the fact that results in crisp boundaries between classes. In some 
cases, an identical feature could plausibly belong to multiple classes. However, 
small details usually exist and distinguish between conceptually overlapping 
classes. In the case of remote contribution, these details are hardly recognized 

	 5	 http://wiki.openstreetmap.org/wiki/Map_Features 

Figure 1: Remote contribution using JSOM editor.

http://wiki.openstreetmap.org/wiki/Map_Features
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by armchair contributors, and consequently, they contribute either imprecise 
or incomplete data.

Rule-Based Guided Classification Approach

To tackle the classification challenges, we propose a rule-based guided classi-
fication approach. Through guiding and recommendations, the approach aims 
to produce data with appropriate and consistent classifications. The approach 
consists of two phases: Leaning and Guiding phases.

Learning Phase

During the Learning phase, the approach employs the increasing availability 
of OSM data in learning the characteristics that distinguish between simi-
lar classes. Figure 2 shows a summary of the learning phase. In this phase, 
the task is to develop a classifier able to distinguish between related classes. 
Data mining algorithms are used to find the distinct topological characteris-
tics that distinguish between classes. The extracted characteristics have the 
form of predictive rules. Afterwards, the rules are integrated into a classifier. 
During the mining process, we depend on qualitative spatial analysis to find 
the characteristics of a specific class. Topology, direction and distance are the 
common qualitative spatial relations. In this work, we particularly investigate 
the topological relations to understand the geographic context of the given 
classes.

Topological Analysis Based on the first law of geography (Tobler 1970), 
nearby geographic features are related to each other. For example, the existence 
of sport’s areas and playgrounds inside the park and garden features, the loca-
tion of gas stations in a direct access to roads area, etc. Hence, in this work we 
investigate the topological relations between pairs of entities to find the charac-
teristics that identify each class. Each entity is characterized by its interior and 
exterior context. At the same time, the appropriate classification should reflect 
the entities characteristics and matches its geographic context. 

Figure 2: Learning phase of the proposed guided classification approach.
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We utilize the 9-Intersection Model (9IM) (Egenhofer 1995), in which the 
topological relations between pairs of entities are defined as follows: disjoint, 
meet, overlap, covers, coveredBy, contains, inside and equal. In this work, disjoin, 
meet, overlap, contains and coverdBy relations are considered. While inside, cov-
ers and equals relations are neglected due to two reasons: (a) inside and cov-
ers are the inverse of contains and coveredBy relations respectively; and (b) the 
equal relation rarely occurs and does not add information to this analysis.

Mining Process The topological analysis aims to find frequent patterns (top-
ological relations) involved between target classes and other geographic fea-
tures, e.g. park contains playground, sport center, etc. Each tag is considered as 
a new feature. For example, leisure = playground and leisure = sport are treated 
differently. We encode them as leisure playground and leisure sport respec-
tively and associate each one with a unique identifier (ID), to facilitate the min-
ing process. The processing is computationally exhaustive and should be done 
in advance during the preparation for the mining task. Afterwards, the mining 
process works to extract atomic rules in the following form:

Class (E, C) ← R(E, F)        (1)

where E represents an entity, C ∈ {‘park’, ‘meadow’, etc.}, R is one of the topo-
logical relations where R ∈ {‘contains’, ‘meet’, etc.} and F represents the set of 
frequent features that mostly involved in a relation R with entities of C. 

We apply the Apriori algorithm (Agrawal et al. 1994) to extract the rules. In 
particular, we use the class association rules mining task, when rules have a pre-
defined class (e.g. ‘park’) as their outcome. Appropriate constraint parameters 
like support and confidence should be adjusted to extract and filter the interest-
ing patterns. Afterwards, the extracted rules are integrated into a classifier.

Basically, developing a classifier based on a set of predictive rules consists 
of the following steps: (1) find all the interesting class association rules from a 
dataset; (2) filter the extracted rules into a set of predictive association rules; (3) 
encode the rules into a classifier; and (4) evaluate the classifier on a test dataset.

Guiding Phase

During the Guiding phase, the developed classifier could be used in many dif-
ferent scenarios. In this approach, we present three scenarios: the contribut-
ing, checking and enriching scenarios. Figure 3 gives brief illustrations of these 
scenarios as follows:

Contributing Scenario In this scenario, the classifier is embedded into an 
editing tool. At the contribution time, the classifier checks the validity of 
a given classification. In case of a problematic classification, the classifier 
informs the contributor of some recommendations. Then, according to 
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the given recommendations, the contributor reacts with a correction (if 
required). The real challenge in this scenario is the computational com-
plexity. During our study, the entities are processed in advance to inves-
tigate their geographic context. In contract, this scenario requires on-line 
processing of contributions at the time of editing.

Checking Scenario This scenario could be directly applied when the devel-
oped classifier is applied to an existing dataset generating the potential 
problematically classified entities. Afterwards, the outliers are presented − 
associated with recommendations − to crowd-sourcing revision. The con-
tributors act to correct the problematic entities (if required).

Enriching Scenario In which the classifier is applied to a set of unclassified 
entities. The classifier predicts classifications for these entities and pre-
sents them for crowd-sourcing confirmation. The contributors’ role here 
is to confirm the given classification and make corrections (if required). 
Another enrichment scenario could also be achieved, when the contribu-
tor reacts to add more information to satisfy the given recommendations. 

In all of the proposed scenarios, the classifier cannot do automatic classifica-
tion or automatic correction directly on the data source. However, it provides 
recommendations for directing contributors towards data of appropriate clas-
sification. At the same time, developing a global classifier might also be inaccu-
rate. Therefore, the proposed approach is to maintain locality during both the 
Learning and Guiding phases. We assumed that a geographic feature should be 
classified identically, at least on the country level.

Figure 3: Guiding phase of the proposed guided classification approach.

editing tool

contribute storeNew Edits

Recommendations

match

generateask for revision
VGI
Data

Recommendations

Possible Outliers presentgenerateapply

submit revisions

VGI
Data

Guiding Phase

Classifier

Classifier

Recommendations presentgenerateapply

submit confirms

VGI
Data

Classifier

co
nt

rib
ut

in
g

ch
ec

ki
ng

en
ric

hi
ng



Tackling the thematic accuracy of  areal features in OpenStreetMap  121

Empirical Study: Grass & Green

To evaluate the proposed approach, an empirical study and an implementation 
are conducted. The study aims to develop a classifier to distinguish between 
grass-related classes: forest, garden, grass, meadow and park classes. The classes 
are the most common grass-related classes within the boundaries of urban cit-
ies (the geographic scope of the research). The classification of these features 
represents a challenge due to the following: (1) in satellite images, they appear 
similar as a green area; (2) in some cases, a feature could plausibly belong to 
multiple classes (e.g. park and garden); and (3) for non-experts, they are all 
grass. Thus, a contributor might be unfamiliar with the characteristics that dis-
tinguish be- tween classes. Table 1 shows the OSM Wiki recommendations for 
these classes. The given recommendations are based on discussion between 
mapper communities. The given recommendations at Table 1 indicate that 
there exist unique characteristics that distinguish between classes.

Data Processing

We use an OSM dataset from Germany dated to December 2013. The choice 
of Germany comes from the following reasons: i) the existence of a large group 
of active mappers; and 2) several researchers have emphasized the quality of 

Class Recommendations
forest Some use this tag for land primarily managed for timber production, 

others use it for woodland that is in some way maintained by humans.
garden A distinguishable planned space, usually outdoors, set aside for the 

display, cultivation and enjoyment of plants and other forms of nature. 
It incorporates both natural and man-made materials. The most com-
mon form is known as a residential garden, it is a form of garden and 
is generally found in proximity to a residence, such as the front or 
back garden. Residential gardens are usually of human scale, as they 
are most often intended for private use. 

grass A tag for a smaller areas of mown and managed grass, for example 
in the middle of a roundabout or verges beside a road. Should not be 
used where a more specific tag is available.

meadow Used to tag an area of meadow, which is an area of land primarily 
vegetated by grass plus other non-woody plants. 

park An area of open space provided for recreational use, usually designed 
and in a semi-natural state with grassy areas, trees and bushes. Parks 
are often but not always municipal.

Table 1: OSM recommendations for the target classes.



122  European Handbook of  Crowdsourced Geographic Information

the data. We extract the entities from the 10 most densely populated cities6 to 
ensure active mappers and hence a certain level of quality. The dataset consists 
of 3,724 forest, 3,030 garden, 7,336 grass, 4,277 meadow and 4,445 park entities. 
About 50% of the extracted entities have only one version (edits), which indi-
cates the lower attraction of these entities to mappers. According to Mooney &  
Corcoran (2012), an increasing number of edits does not usually imply high 
quality. However, it reflects the heavy collaboration/competition among con-
tributors to improve the data quality. The extracted entities are processed indi-
vidually by checking the topological relations between each entity and other 
entities nearby.

Learning Process

During the learning process, the objective is to develop atomic rules per class 
per topological relation. Due to the uncertainty of spatial context, we take into 
account that everything is possible. Thus, a 1% support threshold is considered 
sufficient to extract the interesting patterns (frequent topological relations). 
Each topological relation is processed individually with a given class producing 
a set of predictive rules of that class. We extracted 8,504 rules: 4,100 describe 
forest, 215 describe garden, 745 describe grass, 506 describe meadow and 2,938 
describe park. Although a large number of rules have a confidence threshold 
greater than 50%, the rules themselves represent some difficulties in the clas-
sification process due to: (1) they have a wide range of confidence threshold 
from 100% to 0.7 %; (2) due to the similarity between some classes, there exist 
duplicated rules pointing to different classes; and (3) regarding the topological 
relations, some relations have higher confidence thresholds than the others.

Classification Process

During the classification process, each entity is checked against all extracted 
rules. For example, Figure 4 shows an entity7 with a meadow classification 
which has osm_id = 96279661. The entity matches 46 rules: 26 park, 6 meadow, 
5 forest, 5 garden and 4 grass. Table 2 presents a sample of the matched rules 
for this entity. The figure illustrates that the entity contains a playground, sport 
areas and planned footways, which reflect the characteristics of the park class.

According to Table 2, considering the maximum confidence of the matched 
rules, the top 20 rules have confidence thresholds ranging form 92% to 80% and 
all of them have the result Class(E, ‘park’). At the same time, when consider-
ing the maximum confidence per class, this entity matches with park, meadow, 

	 6	 http://www.citymayors.com/gratis/german_topcities.html 
	 7	 http://www.openstreetmap.org/way/96279661, last accessed April 2015 

http://www.citymayors.com/gratis/german_topcities.html
http://www.openstreetmap.org/way/96279661


Tackling the thematic accuracy of  areal features in OpenStreetMap  123

Rule — Confidence

Class (E, ‘park’) ← contains (E, [1,22,156])) - 92%

Class (E, ‘park’) ← contains (E, [1,15,22, 156])) - 91%

Class (E, ‘park’) ← contains (E, [15,21])) - 89%

Class (E, ‘park’) ← contains (E, [1,15])) - 88%
…

Class (E, ‘park’) ← contains (E, [22])) - 76%

Class (E, ‘park’) ← contains (E, [15])) - 66%

Class (E, ‘meadow’) ← containsBy (E, [128])) - 46%

Class (E, ‘park’) ← meet (E, [15])) - 34%
Where, 1=leisure_playground, 15=highway_footway, 21=sport_soccer, 22=leisure_

pitch, 128=landuse_forest, 156=sport_basketball

Table 2: A sample of matched rules for the entity with osm_id=96279661.

Figure 4: A entity with osm_id=96279661 classified as ‘meadow’ (last visit at 
April 2015).
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grass, forest and garden classes in descending confidences of 92%, 46%, 32%, 13% 
and 12%, respectively. Although the entity is currently classified as meadow, its 
characteristics make it more appropriate to be classified as a park. Hence, our 
recommendation works to guide contributors towards the most appropriate 
classification.

Evaluation Process

To evaluate the classifier, we do not have a ground-truth dataset for these enti-
ties. The available ground-truth datasets cover a higher classification level of 
land use or land cover. Thus, we depended on manual visual investigation to 
evaluate the results. Figure 5 presents examples of appropriate and inappropri-
ate classifications, based on the developed classifier and recommendations.

Figure 5(a) gives examples of appropriate classifications. From left to right, 
the first entity is adjacent to residential houses and other gardens and does not 
contain much infrastructure. The entity is appropriately classified as garden. 
The second one, located between highways and containing nothing, is most 
likely to be classified as grass. The last entity contains a water body, sports cent-
ers, footways and other infrastructure. It is correctly classified as a park. 

Figure 5: Example of appropriate and inappropriate classifications.

(a) Appropriate Classification of garden, grass and park classes

(b) Inappropriate Classification of garden, grass and park classes
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In Figure 5(b), the classifier detects these entities as problematically classi-
fied entities. From left to right, the first entity is classified as garden. The entity 
meets meadow and is located near to a farmland. It does not inherit any plant or 
decoration characteristics. The classifier recommends meadow as an appropri-
ate class. Whereas the middle entity is classified as grass, despite the fact that 
it seems too large, contains sports centers, is surrounded by forest areas and is 
adjacent to a playground. The classifier recommends park class for this entity. 
The entity on the right shows a clear example of inappropriate classification 
of park. The entity is located between roundabouts and does not contain any 
infrastructure at all. The classifier recommends it to be classified as grass.

Grass&Green: a quality assurance web tool

As another way to evaluate the proposed approach, we developed a web tool 
as a recommendation system called Grass&Green8 as indicated in Figure 6. 
The tool presents the generated recommendations for crowd revisions as pro-
posed in the checking scenario (see section 3.2). We created social media pages 
to attract the contributors for revisions: Facebook and Twitter. Moreover, we 
wrote OSM diaries to announce the tool to the OSM community. In this tool, 
the user logs in via his/her OSM account and contributes directly to the project. 
The tool presents entity by entity, combined with the recommended classes and 

	 8	 http://opensciencemap.org/quality

Figure 6: Grass&Green: the main contribution interface (last visit at September 
2015).

http://opensciencemap.org/quality
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other potential classes. Due to the ambiguity of grass-related features, we pro-
vide the users with the two most recommended classes. The user has the ability 
to press an “I don’t know” (inactive participation) in unclear cases. Moreover, 
the user could also change the recommendations or choose between (yes, no or 
maybe) in case of high ambiguity. The tool provides users with detailed textual 
and visual descriptions about the target classes and other grass-related classes. 

Eleven days after launching the tool, we obtained promising results. We had 
around 80 users from various countries. They checked 560 entities: 485 active 
and 75 inactive participations. They agree with the generated recommenda-
tions as follows: 30.10% full agree, 60.84% partial agree and 9.05% disagree. 
The findings indicate the feasibility of the approach and the tool acts perfectly 
to improve the classification of OSM data.

Discussion and Conclusions

Conceptualization of geographic features has long been a topic of debate (Frank 
1997). However, with the increasing role of public participants in collecting 
geospatial data, it becomes a crucial issue. GIS applications exploit VGI as an 
auxiliary data source. That means the data developed by public participants 
is used to provide services for others. A fact that raises more attention to the 
resulting data quality. 

In particular, how do the participants perceive the space? How do they group 
and categorize the geographic features? How do they find the commonalities 
and differences between conceptually overlapping classes? All these questions 
might be addressed by utilizing the developed geospatial ontologies. Frank 
(1997) discussed the vital role of ontology in GIS applications, to achieve a bet-
ter understanding of the space and to build more efficient information systems. 
For example, the OWL2 ontology that has been developed for structuring city 
information modeling with respect to land use mapping (Montenegro et al. 
2012). OSMonto is another ontology, which has been developed to enrich the 
semantics of OSM tags, without correcting or modifying any conceptual mis-
takes in the taxonomy of OSM tags (Codescu et al. 2011). However, the link 
between ontologies’ producers and consumers, in the GIS domain, still needs 
more research. 

In VGI, the data is classified following the bottom-up approach; where the 
participants contribute data based on their local knowledge. They translate 
their observations into classes and categories. While in professional methods, 
the data is classified based on a top-down approach; where a pre-defined model 
is developed based on strict measures defining the classes. The difference of 
VGI approach leads to questionable data classification. Therefore, guiding 
amateur participants is needed for enhanced data classification. For example, 
designing intelligent data capturing interfaces is one possibility, among oth-
ers, to support the contribution of enhanced data classification. This chapter 
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calls for the development of intuitive interfaces for VGI projects; negotiation, 
exemplifications and comparisons are human-centered approaches that could 
be used to support the VGI participants during the contribution process. 

In this chapter, we addressed the VGI quality from a classification perspec-
tive. We investigated the classification correctness of an entity with respect to its 
inherent geographic characteristics. We proposed an approach for guided clas-
sification. The approach tackles the classification challenges in the OSM project 
by guiding the contributors during the classification process. The approach has 
two phases: the Learning and Guiding phases. During the Learning phase, the 
approach utilizes the OSM dataset to learn the distinct topological character-
istics that distinguish between similar classes. Data mining algorithms have 
been used to develop a classifier. Afterwards, the developed classifier is used in 
different scenarios (contributing, checking and enriching) during the Guiding 
phase. The approach aims not only to improve the classification of data, but it 
could be used to enrich the data source as well. 

We conducted visual investigations and an implementation to evaluate the 
proposed approach. We developed a classifier to distinguish among a set of 
grass-related classes. The selected classes have some similarity, but each one has 
its unique characteristics. The findings emphasized the feasibility of the pro-
posed approach. The developed tool shows the positive response of the crowds 
towards the data quality. The presented results are preliminary indicators of 
an enhanced data classification. We will keep investigating the tool results 
and check the enhanced data classification in more details. In future work, the 
research would investigate how to generalize the developed classifier. In addi-
tion, the intuitive user interface would be studied to develop human-centered 
guided classification that corresponds to the nature of VGI. 
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