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Abstract

The things surrounding us vary dramatically, which implies that there are far 
more small things than large ones, e.g., far more small cities than large ones 
in the world. This dramatic variation is often referred to as fractal or scaling. 
To better reveal the fractal or scaling structure, a new classification scheme, 
namely head/tail breaks, has been developed to recursively derive different 
classes or hierarchical levels. The head/tail breaks works as such: divide things 
into a few large ones in the head (those above the average) and many small 
ones (those below the average) in the tail, and recursively continue the divi-
sion process for the large ones (or the head) until the notion of far more small 
things than large ones has been violated. This paper attempts to argue that 
head/tail breaks can be a powerful visualization tool for illustrating structure 
and dynamics of natural cities. Natural cities refer to naturally or objectively 
defined human settlements based on a meaningful cutoff averaged from a mas-
sive amount of units extracted from geographic information. To illustrate the 
effectiveness of head/tail breaks in visualization, I have developed some case 
studies applied to natural cities derived from the points of interest, and social 
media location data. I further elaborate on head/tail breaks related to fractals, 
beauty, and big data. 
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Introduction

The things surrounding us vary dramatically, which implies that, instead of 
more or less similar things, there are actually far more small things than large 
ones, e.g., far more small cities than large ones in the world. This dramatic vari-
ation is often referred to fractal or scaling, and is well captured by geographic 
information of various kinds. Reflected in the points of interest (POI), there are 
far more POI in cities than in countryside; in terms of social media, there are far 
more users in cities than in the countryside. The new kind of geographic infor-
mation constitutes what we now call big data (Mayer-Schonberger and Cukier 
2013) in contrast to conventional small data. Unlike small data (e.g., census or 
statistical data), which are often estimated and aggregated, geographic infor-
mation in the big data era is accurately and precisely measured at an individual 
level. This kind of geographic information due to its diversity and heterogeneity 
is likely to show the scaling pattern of far more small things than large ones. To 
better reveal the scaling structure, a new classification scheme, namely head/
tail breaks (Jiang 2013a), has been developed to recursively derive inherent 
classes or hierarchical levels. It divides things around an average, according to 
their geometric, topological and/or semantic properties, into a few large ones 
in the head (those above the average) and many small ones (those below the 
average) in the tail, and recursively continues the division process for the large 
ones (or the head) until the notion of far more small things than large ones has 
been violated (c.f., Section 2 for a working example). 

Natural cities refer to naturally and automatically derived human settle-
ments, or human activities in general on the earth’s surface, based on a mean-
ingful cutoff averaged from a massive amount of units extracted from massive 
geographic information. For example, we build up a huge triangulated irregular 
network (TIN – a digital data structure commonly used for the representation 
of a surface) consisting of one-day Tweets locations indicated by GPS coordi-
nates around the world. It is obvious that with the TIN there are far more short 
edges than long ones. The average length of the edges splits all the edges into 
two parts: a minority of long edges (longer than the average) in the head, and 
a majority of short edges (shorter than the average) in the tail of the rank-size 
plot (Zipf 1949). Aggregate all short edges to create thousands of natural cit-
ies around the world. The natural cities emerge from a collective decision of 
diverse, independent, and heterogeneous TIN edges, thus manifesting some 
wisdom of crowds (Surowiecki 2004). Interestingly, the natural cities demon-
strate striking fractal structure and nonlinear dynamics (Jiang and Miao 2015). 
While conventional cities imposed by authorities from the top down are of 
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great use for administation and mangement, natural cities defined from the 
bottom up are of more use for studying the underlying structure and dynamics. 
Natural cities are not constrained to individual countries, but are universally 
defined and delineated for the entire world with support of big data. Because 
of the unversality, natural cities defined at very fine spatial and temporal scales 
provide a useful means for scientific research. 

This paper attempts to develop an argument that in the big data era head/tail 
breaks can become an efficient and effective visualization tool for illustrating 
structure and dynamics of natural cities. The fundamental logic of this argu-
ment is as such. A large number of natural cities as a whole can be classified into 
different hierarchical levels or classes. Instead of showing all the classes or the 
whole, we can deliberately drop out some low classes, yet without distorting the 
underlying scaling pattern of the whole. This is because the remaining classes as 
a sub-whole are self-similar to the whole. This logic applies to the time dimen-
sion as well, i.e., instead of showing all evolving patterns along a time line, we 
deliberately choose a part that reflects the whole. Head/tail breaks provides a 
simple instrument that helps us see fractals in nature and society, i.e., through 
examining whether there are far more small things than large ones, or more 
precisely whether the scaling pattern recurs multiple times with Ht-index being 
at least 3 (Jiang and Yin 2014). Conventionally, we must compute the fractal 
dimension to determine whether a set or pattern is fractal (Mandelbrot 1982). 
Fractal dimension (D) is rigorously defined, referring to the ratio of the change 
of details (N) to that of measuring scale (r), D = log(N)/log(r). Following the 
rigorous definition, fractals are found to appear in a variety of phenomena such 
as mountains, trees, clouds, rivers, cities, streets, architectures, the Internet, the 
World Wide Web, social media, and even the paintings of Jackson Pollock (e.g., 
Batty and Longley 1994, Eglash 1999, Taylor 2006). Now with head/tail breaks, 
not only experts, but also the general public can simply judge the ubiquity of 
fractals relying on our intuitions, i.e., a set or pattern is fractal if the scaling pat-
tern of far more small things than large ones recurs multiple times.

The remainder of this paper is structured as follows. Section 2 introduces 
head/tail breaks and discusses how it leads to a new definition of fractals 
using the Sierpinski carpet and Mandelbrot set as working examples. Section 
3 reports several case studies applied to visualization of natural cities derived 
from POI and social media data. Section 4 adds some further discussions on 
head/tail breaks to meet challenges from big data. Finally Section 5 concludes 
the paper, and points to future work. 

Head/tail breaks leading to a new definition of fractals

Head/tail breaks is largely motivated by heavy-tailed distributions such as 
power law, lognormal, and exponential distributions (c.f. Section 4 for a dis-
cussion) to derive inherent classes or hierarchical levels. The resulting number 
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of classes is given by another term called Ht-index (Jiang and Yin 2014), as an 
alternative index to fractal dimension for characterizing the complexity of frac-
tals. The higher the Ht-index, the more complex the fractals. Before illustrating 
its visualization capability, I shall briefly introduce head/tail breaks using the 
working example of the Sierpinski carpet.

The Sierpinski carpet, as a classic plane fractal, contains far more small squares 
than large ones, i.e., 1, 8, and 64 squares with respect to sizes 1/3, 1/9 and 1/27 
given the carpet of one unit (Figure 1). The fractal dimension of the Sierpinski 
carpet can be calculated by D = log(8)/log(3) = 1.893, which indicates that every 
time the scale (r) is reduced three times, the number of squares (N) increases 
eight times. The calculation may look somewhat abstract and hard to grasp. 
Now let us take a simpler and easier way. There are far more small squares than 
large ones; at the smallest end there are 64 squares sized 1/27, at the largest end 1 
square sized 1/3, and in the middle of the two ends 8 squares sized 1/9. If we cre-
ate a scatterplot of these three points in an Excel sheet and fit them into a power 
function, one would observe y = 0.125 x ^ -1.893 (see Figure 1). This is called 
the Richardson plot, showing the ratio of the change of details (N) to the change 
of scales (r). In the Richardson plot, three points are exactly on the distribution 
line, implying that the Sierpinski carpet is strict fractal, or alternatively, the parts 
are strictly self-similar to the whole. If we replaced the squares with city sizes, 
the points would be around rather than exactly on the distribution line. This is 
because city sizes are just statistically fractal rather than strictly fractal.

Now let us examine how head/tail breaks works for the Sierpinski carpet. There 
are a total of 1 + 8 + 64 = 73 squares, and the average size of which is calculated by 

Figure 1: (Color online) Illustrstion of head/tail breaks and fractal dimension 
using the Sierpinski carpet.

Note: There are far more small squares than large ones for the Sierpinski carpet. 
The Richardson plot shows the fractal dimension, while the nested rank-size 
plots demonstrate the head/tail breaks process or the Ht-index.
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m1 = (1/3 * 1 + 1/9 * 8 + 1/27 * 64) / (1 + 8 + 64) = 0.0492. This first mean can split 
all the 73 squares into two unbalanced parts: a small portion of the large squares 
(nine squares larger than the mean) in the head, and a big portion of the small 
squares (64 squares smaller than the mean) in the tail. For the nine squares in the 
head, their average size is calculated by m2 = (1/3 *1 + 1/9 * 8) / (1 + 8) = 0.1358. 
This second mean can split all nine squares into two unbalanced parts: a small 
portion of the large squares (one square larger than the mean) in the head, and 
a large portion of the small squares (eight squares smaller than the mean) in the 
tail (Table 1). The above calculation indicates that the pattern of far more small 
squares than large ones recurs twice, and therefore Ht-index = 2 + 1 = 3. The 
recurring scaling pattern is also shown in the nested rank-size plots in Figure 1. 
The Ht-index is indeed 3 because there are only three scales: 1/3, 1/9, and 1/27. 
If we added 512 squares of the smaller size 1/81, the Ht-index would increase by 
one, but the fractal dimension would remain unchanged. From this, we see how 
Ht-index complements fractal dimension in capturing the complexity of fractals. 

As the above example shows, head/tail breaks is quite simple and straight-
forward, i.e., given that there are far more small things than large ones, split 
things into a few large and many small, and recursively continue the splitting 
for the large until the notion of far more small things than large ones is violated. 
Importantly, head/tail breaks leads to a relaxed definition of fractals: a set or 
pattern is fractal if the notion of far more small things than large ones recurs 
multiple times, Ht-index >= 3. This new definition based on the head/tail breaks 
is pretty intuitive, and may help refine our eyes or improve our intuitions for 
fractals. As remarked by Mandelbrot (1982), the most important instrument of 
thought is the eye rather than mathematical formula. With the new definition, 
anyone with little mathematical knowledge can easily rely on his/her intuitions 
to determine whether something is fractal. Now let us examine whether our 
intuitions have been improved with reference to the Mandelbrot set in Figure 2.

It is well known that the Mandelbrot set, probably the most complex shape 
known to man, comes from the amazingly simple equation: z = z ^ 2 + c. 
Despite the simplicity, I have decided not to consider the underlying math-
ematics; interested readers can refer to the literature for more details (e.g., 
Mandelbrot 2004). Instead, let us rely on our intuitions by concentrating on the 
Mandelbrot set shape and an infinite number of convoluted Julia sets shapes it 
generated, some of which are shown in Figure 2. What the stunning images of 
these shapes have in common is the ubiquity of far more small things than large 
ones. The Mandelbrot set can be zoomed into deeply to find similar patterns 

# Squares Mean # head # tail % head % tail

73 0.0492 9 64 12% 88%

9 0.1358 1 8 11% 89%

Table 1: The head/tail breaks for the Sierpinski squares.
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again and again infinitely, so the Mandelbrot set can be said to be “big data”. 
The Mandelbrot set (Panel 0) contains far more small bulbs than large ones, as 
do the two related Julia sets (Panel 1-2) generated from within the bulbs (black 
in Panel 0) of the Mandelbrot set. The Julia sets generated from outside the 
bulbs (color in Panel 0) of the Mandelbrot set have some dramatically different 
shapes and colorful images (Panel 3-6), which clearly evoke a sense or intuition 
that there are far more small structures than large ones. The images also look 
beautiful. Note that it is essentially not the colors but the underlying fine struc-
tures (or recurring pattern of far more small things than large ones) that make 
the patterns beautiful (Alexander 2002); see Section 4 for a further discussion.

Visualization of city structure and dynamics

When the social scientist Jacob L. Moreno (1934) first studied such human 
relationships as likes and dislikes, his dream was to map them for a whole city 

Figure 2: (Color online) Ubiquity of far more small things than large ones in 
both the Mandelbrot set (Panel 0) and the Julia sets (Panels 1 to 6).

Note: There are an infinite number of bulbs tangent to the main cardioid of the 
Mandelbrot set. The Julia sets in Panels 1 and 2 are generated from within the 
bulbs (black in Panel 0), whereas the Julia sets in Panels 3 to 6 are generated 
from outside of the bulbs (color in Panel 0). The figures in Panel 0 indicate the 
approximate locations where the Julia sets are generated.
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or nation. It now appears that what he dreamed of has been fully realized, not 
only for a whole nation, but for the entire world, with millions or billions of 
people connected through social media such as Facebook and Twitter. The 
New York Times praised Moreno’s work as a new human geography (Jones 
1933), because the map metaphor was used for portraying the acquired human 
relationships, with nodes for individuals, links for relationships between the 
individuals, red lines for liking, black lines for disliking, triangles for boys, 
and circles for girls. This semiology, together with the methods of data col-
lection and data analysis, were typical social science methods in the age of 
data scarcity, or the so-called small data era. Nowadays, we have entered an 
unprecedented big data era, in which we are overwhelmed by crowdsourcing 
data, accumulated in social media and contributed by individuals (Goodchild 
2007, Kwak et al. 2010, Gao and Liu 2014). In addition, advanced geospatial 
technologies have already produced a large amount of geographic information 
such as satellite images (National Research Council 2003). Big data requires 
new ways of thinking (Jiang 2015b) in order to better understand the underly-
ing social and geographic structure and how the structure evolves over time. 
In this connection, visualization offers a powerful means to reach the better 
understanding.

Natural cities derived from POI

Points of interest (POI) are spread across countries, particularly within cities, 
represent interesting locations or facilities such as churches, schools, shops, 
and pubs. As a wiki-like collaboration to create a free editable map of the world, 
OpenStreetMap (Bennett 2010) has integrated millions of POI, including basic 
categories such as automotive, eating and drinking, government and public 
services, health care, and leisure. In this study, I took approximately 2 mil-
lion POIs for the three European countries: France, Germany, and the United 
Kingdom from CloudMade (http://download.cloudmade.com/). Following the 
same procedure of extracting natural cities introduced in the previous work 
(Jiang and Miao 2014), we built a huge TIN for each country, and then derived 
natural cities for further scaling analysis. Table 2 presents the basic statistics 
about the derived natural cities. France, for example, has 280,117 POI, of which 
254,008 unique points were used to generate a huge TIN with 835,009 edges. 
There are far more short edges than long edges, so the distribution is clearly 
L-shaped. I applied the head/tail division rule (Jiang and Liu 2012) into the 
massive number of edges, which resulted in two unbalanced parts: those above 
the mean in the head, and those below the mean in the tail. All those edges in 
the tail were aggregated, leading to the 9,391 natural cities. Figure 3 shows the 
resulting natural cities (Panel 1), together with those for the other two coun-
tries (Panels 2 and 3). Germany is the densest country in terms of both POI and 
natural cities, followed by the UK.

http://download.cloudmade.com/
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There are far more small natural cities than large ones in terms of the num-
bers of POI they contain. To effectively visualize the underlying scaling hier-
archy of the natural cities, I applied the head/tail breaks to computing the Ht-
index that is shown in Table 2. France, Germany, and the UK, respectively, have 
six, seven, and six hierarchical levels or classes. If all the classes were displayed 
by different sizes of red dots, no matter how small they are, the patterns would 
not be recognizable like hairballs. Instead, I chose the top four or three classes 
(Panels 4, 5, and 6 of Figure 3), which reflect the same scaling patterns of all 
the classes in the sense that the pattern of far more small things than large ones 
is retained. The fact that the top classes reflect the whole is the true power of 
head/tail breaks. In other words, the top classes retain the same scaling pattern 
of far more small things than large ones of all the classes.

Natural cities from Tweets locations

Like POI, social media users’ locations can be aggregated to form individual 
natural cities. Unlike POI, Twitter users’ geolocations contain very precise time 
information, up to minutes or seconds. In this way, we can slice the Tweets 
location data minute by minute, hour by hour, in order to track how the natural 
cities evolve. The derivation of the natural cities followed the same procedure in 
the previous work (Jiang and Miao 2015), and was based on the fact that there 
are far more low-density areas than high-density ones. That is, we generated a 
huge TIN for the unique locations of Tweets and then split the TIN edges into 
two unbalanced parts: those above the average in the head, and those below 
the average in the tail. Eventually, those edges in the tail are aggregated into the 
thousands of natural cities. The procedure is a simple application of the head/
tail breaks, or that of the head/tail division rule (Jiang and Liu 2012). Let us 
consider the four snapshots to examine the underlying fractal structure and 
nonlinear dynamics of the natural cities (Figure 4). The evolution of the natu-
ral cities shows little difference from that of the Koch flake: the former being 
statistically self-similar, and the latter being strictly self-similar. Accordingly, I 

France Germany UK

POI 280,117 1,299,638 505,051

Unique POI 254,008 977,357 462,424

TINEdge 835,009 3,238,695 1,511,023

Natural cities 9,391 48,830 16,814

Ht-index/hierarchy 6 7 6

Hierarchy shown 4 4 3

Table 2: Basic statistics about the natural cities derived from POI.
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claimed that social media could act as a good proxy for studying the evolution 
of real cities, in order to understand how they are generated and evolve through 
local and global interactions from the bottom up. This insight could fundamen-
tally change the ways we studied cities in the small data era of the past. 

The scaling patterns appear at different levels of geographic space. This is 
the true sense of ubiquity of fractal geographic features. It appears at a country 
level, a regional level, and a city level. Figure 5 presents an illustration of the 
ubiquity of scaling patterns. The large number of natural cities derived from 
Tweets locations are classified into six classes. I display only the top 4 classes 
for visual clarity, yet they reflect the pattern of the whole set (Panel 0). The 
enlarged regions of Chicago and New York (Panels 1 and 2) clearly show that 
there are far more small cities than large ones. At the city level, I computed the 
connectivity of individual streets, and the connectivity (or the number of other 
streets intersected) clearly shows a heavy-tailed distribution. All the streets are 

Figure 3: (Color online) The natural cities derived from POI of France (Panels 1 
and 4), Germany (Panels 2 and 5), and the UK (Panels 3 and 6).

Note: The red patches indicate the natural cities or their boundaries, whereas 
the red dots indicate classified city sizes in terms of the number of POI. As 
mentioned in this paper, only a few top classes based on the head/tail breaks 
are shown for visual clarity. The grey background is the points of interest. The 
map scales are 1:15M.
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therefore classified and visualized based on the head/tail breaks. I invite the 
reader to compare Figures 2 and 5: the former being purely mathematical, and 
the latter geographic; the former being infinite, and the latter finite; the coun-
try as a whole equivalent to the Mandelbrot set as a whole, whereas the cities 
as parts equivalent to the Julia sets as parts; a city as a whole equivalent to 
the Mandelbrot set a whole, whereas the streets as parts equivalent to the Julia 
sets as parts. From the comparison, we see a nested or cascading structure for 
both the Mandelbrot set and the geographic space, and importantly the shared 
recurring scaling pattern of far more small things than large ones.

Further discussions on head/tail breaks

Head/tail breaks offers a new, less strict way of looking at our surrounding phe-
nomena, in particular societal and organization phenomena. A phenomenon 

Figure 4: (Color online) The evolution of the natural cities on the background 
of TIN versus iteration of Koch flake.

Note: A few large pieces become more fragmented, whereas many small pieces 
are continuously added. Eventually there are far more small cities than large 
ones. This way of evolution looks very much like that of Koch flake. The major 
difference between the natural cities and Koch flake is the former being statisti-
cally self-similar, and the latter strictly self-similar. The map scales are 1:8.4M.
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or structure is fractal if there are far more small things than large ones in it. 
The notion of far more small things than large ones is not just in terms of geo-
metric properties, but for topological and semantic properties as well, i.e., far 
more unpopular things than popular ones, or far more meaningless things than 
meaningful ones. Consequently, many societal and organizational phenomena 
are fractal, because they tend to be divided in an unbalanced way, which is 
known as the 80/20 principle (Koch 1998). Head/tail breaks, in particular the 
nested rank-size plots, provides a new interpretation of self-similarity. Con-
ventionally, self-similarity refers to the property that the whole has the same 
shape as one or more of its parts (Mandelbrot 1982). Now the self-similarity 
can be interpreted by the repeated presence of far more small things than large 
ones, or alternatively, the repeated appearance of the small head and long tail 
division. It is the self-similarity that makes visualization of city structure and 
dynamics possible. 

Head/tail breaks applies to data with a heavy-tailed distribution. The heavy-
tailed distribution includes power laws as well as lognormal and exponential 

Figure 5: (Color online) Ubiquity of scaling patterns at different levels using 
the USA (mainland) as an example.

Note: The largest 55 natural cities in the top four classes at the country level 
(Panel 0); there are far more small cities than large ones at the regional level 
(Panels 1 and 2), and far more less-connected streets than well-connected ones 
at the city level (Panels 3 to 6), with blue being the least connected and red the 
most connected. The map scales for the USA (Panel 0), the regions (Panels 1, 
and 2), and the cities (Panels 3-6) are respectively 1:60M, 1:6M, and 1:2M.
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distributions. Strictly speaking, the exponential distribution is excluded from 
the heavy-tailed distribution, because its tail is quite short. I included it in the 
heavy-tailed distribution family because for most real-world data, there is a 
minimum threshold above which data are claimed to be power laws, lognor-
mal or exponential distributions (Newman 2005). However, while conduct-
ing the head/tail breaks for the data, we consider all the data values includ-
ing those below the minimum threshold. Thus, the data with an exponential 
distribution including those below the minimum would be heavy-tailed, and 
can therefore be broken multiple times using the head/tail breaks. It is also 
widely recognized that the bigger the data, the more likely they are heavy-
tailed (Jiang 2015d). 

Fractal structure, or the recurring scaling pattern of far more small things 
than large ones, possesses a new kind of beauty that positively impacts 
human well-being (Jiang and Sui 2014). The new kind of beauty, initially dis-
covered and defined by Christopher Alexander (2002), differs fundamentally 
from conventional wisdom about aesthetics, being personal and subjective. 
The fractal beauty exists in deep structure, being objective and universal in 
nature. In other words, it is not the surface colors but the deep fractal struc-
ture that makes fractals beautiful. This deep structure is a kind of order that 
exists not only in nature but also in what we build and make (Alexander 
2002), not only in science but also in humanities and social sciences. The 
beauty, the order revealed by head/tail breaks, or fractal geometry in general, 
cuts across multiple sciences and disciplines, bridging the two cultures (Snow 
1959) to form the third culture. I believe that the visualization examples of 
city structure and dynamics shown in the paper embody some spirits of the 
third culture.  

Many natural and societal phenomena demonstrate fractal structure and 
nonlinear dynamics (Mandelbrot and Hudson 2004). To better understand the 
complexity of social structure and dynamics, we must rely on a range of com-
plexity modeling tools such as fractal geometry, chaos theory, and agent-based 
simulations (Miller and Page 2007) rather than conventional linear methods 
such as Euclidean geometry and Gaussian statistics. We must harness the large 
amounts of data accumulated on social media and the Internet for mining indi-
vidual and collective behaviors. As a timely response to the challenges aris-
ing from big data, the emerging field of computational social science (Lazer 
et al. 2009, Watts 2007) has been fundamentally transforming the conven-
tional social sciences into a data- and computational-intensive science. Unlike 
computational sciences in the twenty century, computational social science is 
a product of the twenty-first century, and it should be correctly interpreted 
as data-intensive computational social science in the big data era. This is the 
same for computational geography, which appeared first in the 1990s (Open-
shaw 1998), should be characterized as computational- and data-intensive in 
the twenty-first century (Jiang 2013b). In the big data era, cartography faces 
the same challenge of how to efficiently and effectively visualize the large 
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amounts of crowdsourcing geographic information. I believe that recognition 
of the fractal nature of maps and mapping (Jiang 2015c) offers a way to meet 
the challenge.

Conclusion

This paper has developed an argument that head/tail breaks can be used for 
visualization of structure and dynamics of natural cities in the big data era. To 
support the argument, I have developed several case studies applied to natu-
ral cities derived from crowdsourcing data. This paper has also discussed how 
head/tail breaks leads to a new definition of fractals, helping improve our intui-
tions for seeing fractals in nature and society. Throughout the paper, we have 
seen both mathematical fractals (such as the Sierpinski carpet, Mandelbrot set, 
and Koch flakes) and geographic features (such as the natural cities and streets) 
share the same recurring scaling of far more small things than large ones. The 
scaling property is what drives the development of head/tail breaks. It is the 
scaling property that makes head/tail breaks an efficient and effective visuali-
zation tool for revealing city structure and dynamics. The power of head/tail 
breaks lies in its simplicity: split things around an average into a few large and 
many small, respectively in the head and the tail of the nested rank-size plots, 
and recursively continue the splitting process in the head until the condition of 
far more small things than large ones is violated. The simple head/tail breaks 
and its induced Ht-index can help even the general public to see a variety of 
fractals in science, art, and society. 

The notion of natural cities, as a product of the big data era, provides a pow-
erful tool to study human activities on the earth’s surface, and enables us to 
develop new insights into geographic information harvested from crowdsourc-
ing data. Compared with conventional real cities that are imposed by authori-
ties from the top down, natural cities are defined from the bottom up, and from 
individual people and their interactions. Unlike real cities, natural cities can 
be naturally and objectively derived and delineated from big data such as VGI 
and social media data. This makes natural cities universally available for the 
entire world, i.e. all the natural cities in the world rather than those in some 
countries. In this regard, big data is probably not so much about bigness, but 
rather completeness. Natural cities may fundamentally change the ways cities 
were studied. 
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